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resumo
No domínio da investigação de MRP, 
convém dispor de uma lei de loteamento 
dominante, simultaneamente eficaz e 
constantemente quase-óptima numa 
grande variedade de situações 
experimentais. Este trabalho destina-se a 
determinar qual das heurísticas de 
loteamento em vários níveis actualmente 
disponíveis responde a essas condições e 
é a mais aconselhável para outros casos 
de MRP. O trabalho limita-se a quatro 
métodos relativamente simples e muito 
eficazes que já demonstraram 
anteriormente poder fornecer soluções 
quase-óptimas muito superiores à maioria 
das leis de loteamento geralmente 
utilizadas. Os quatros métodos são 
comparados entre si — o que até aqui 
nunca tinha ocorrido — num vasto leque de 
situações experimentais. Os resultados 
sugerem uma nova heurística 
recentemente proposta como alternativa 
muito prometedora para outros trabalhos 
de investigação sobre MRP.

résumé /  abstract
Dans le domaine de la recherche MRP il est 
nécessaire de disposer d’une loi de groupage 
dominante, qui puisse être à la fois très efficace 
et continuellement quasi-optimale dans une 
grande variété de conditions expérimentales. 
Cette recherche a pour but d’identifier laquelle 
des heuristiques de groupage à plusieurs 
niveaux actuellement disponibles répond à ces 
critères et dont l’utilisation serait donc des plus 
conseillées en ce qui concerne la MRP. Nous 
nous concentrerons sur quatre méthodes 
relativement simples qui ont montré au cours de 
recherches précédentes pouvoir générer des 
solutions quasi-optimales bien supérieures à la 
plupart des lois de groupage communément 
utilisées dans les études en MRP. Ces quatre 
méthodes, qui jamais auparavant n’avaient été 
évaluées directement l’une contre l’autre, sont 
comparées sur un large éventail de conditions 
expérimentales. Les résultats expérimentaux 
désignent une heuristique récemment proposée 
comme une alternative très attrayante pour 
d’autres recherches en MRP.

What is needed in much of the MRP research is 
one dominant lot sizing rule, which can be relied 
upon to be both very efficient and consistently 
near-optimal across a wide variety of 
experimental conditions.
The present research seeks to identify which, 
if any, of the presently available multilevel lot 
sizing heuristics meet these criteria, and would 
thus be most suitable for use in studies of 
other MRP issues. The focus is on four 
relatively simple and very efficient methods 
which have been shown in previous research 
to generate near-optimal solutions vastly 
superior to many of the lot sizing rules 
commonly used in MRP studies. The four 
methods, which had previously never been 
evaluated directly against each other, are 
compared over a large and comprehensive 
experimental design. The experimental results 
point to a recently offered heuristic as a very 
attractive alternative for use in other MRP 
research.



Identifying a Dominant Multilevel Lot Sizing Heuristic
for Use in M RP Research

Introduction

A variety of recent research on issues within Material Requirements Planning (MRP) has involved 
the integral use of lot sizing algorithms to determine solutions and system costs. This would 
include research into the impact of freezing the master production schedule, the impact of rolling 
planning horizons, and the effects on system nervousness and instability caused by safety stock, 
demand uncertainty, supply uncertainty, and inventory record accuracy, among others (Harrison,
1991 ; Ho and Ireland, 1989; Ho and Lau, 1990; Lin and Krajewski, 1989; Lin et al., 1990; 
Sridharan et al., 1987, 1988; Sridharan and Berry, 1990; Sridharan and LaForge, 1989a, 1989b, 
1990; Subhashish and Grasso, 1991 ; Zhao and Lee, 1991). Much of this research to date, 
particularly that associated with freezing the master production schedule, has focused on single 
item or single level MRP systems. In response, a budding stream of new research has begun to 
study whether conclusions drawn in the single level studies can be generalized to multilevel 
systems (Harrison, 1991 ; Ho and Ireland, 1989; Ho and Lau, 1990; Lin and Krajewski, 1989; Lin 
et al., 1990; Subhashish and Grasso, 1991 ; Zhao and Lee, 1991 ).

However, most of this new multilevel research has retained the practice of using single item lot 
sizing rules, such as Silver-Meal, Wagner-Whitin, EOQ, Part Period Balancing, and the like, as a 
means of determining solutions (Harrison, 1991; Ho and Ireland, 1989; Ho and Lau, 1990; Lin and 
Krajewski, 1989; Lin et al., 1990; Subhashish and Grasso, 1991). These methods are simply 
being applied sequentially, from the top to the bottom of the product structure, an approach which 
ignores the cost trade-offs associated with multiple levels. This is true despite the fact that a 
preponderance of sources have established the poor and/or inconsistent lot sizing performance of 
these types of lot sizing methods in a multilevel environment (Biggs et al., 1977, 1980; Blackburn 
and Millen, 1982a, 1985; Choi et al., 1984; Coleman and McKnew, 1991 ; Collier, 1980; Jacobs 
and Khumawala, 1982; Krajewski et al., 1980; Rehmani and Steinberg, 1982; Veral and LaForge, 
1985; Yellen, 1979). Precious few of the recent multilevel analyses have employed any of the 
much more effective lot sizing methods (Blackburn and Millen, 1982a, 1985; Coleman and 
McKnew, 1991; McLaren, 1976; McLaren and Whybark, 1976; Rehmani and Steinberg, 1982) 
which have been specifically designed for MRP’s multilevel environment (see Zhao and Lee,
1991, as an exception).

The problem with this type of approach is that the resulting absence of consistently near-optimal 
lot sizing solutions potentially biases cost results when other issues are being addressed. This 
potential bias is due to the fact that many of the simpler, sequentially applied lot sizing heuristics 
commonly used have been shown to be extremely situationally dependent in their performance 
(see the many citations above). Thus, whereas an MRP researcher may conclude that, for 
example, one freezing method is better than another under certain situations, the difference in 
costs may actually be greatly attributable to the effectiveness (or lack thereof) of the single level 
lot sizing method(s) being used in those conditions.

What is needed in much of the multilevel MRP research where lot sizing is not the focus, but must 
be performed to obtain solutions, is a very efficient lot sizing algorithm which can be relied upon to 
consistently generate near-optimal multilevel solutions. Such a method would virtually eliminate 
any bias derived as a result of using a poor lot sizing methodology. The efficiency issue is also 
quite important, given the large scale nature of many MRP simulation experiments. Also, the use 
of one very good algorithm, as opposed to a group of two or three single-item rules (as is 
commonly practiced), could reduce the size of the experimental designs necessary to test the 
effects of other MRP conditions and methods.

The present research seeks to identify which, if any, of the presently available multilevel lot sizing 
heuristics meet both the efficiency and consistency criteria, and would thus be most suitable for 
use in studies of other MRP issues. The focus of the study will be on four relatively simple and 
very efficient methods which have been shown in previous research to generate near-optimal
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solutions vastly superior to many of the sequential single item lot sizing rules commonly used in 
MRP studies. All four have specific features designed to reflect MRP’s multilevel environment, yet 
all four retain the straightforward, “one pass from top-to-bottom” nature of the more widely used 
techniques. However, the four techniques had heretofore never been previously compared over a 
broad-based, comprehensive experimental design. Given this previous lack of direct and thorough 
comparison, the present purpose is to identify the dominant of these four highly efficient 
algorithms, achieved by comparative evaluation across a wide variety of problem environments.

The next section provides a brief outline of the four heuristics which are compared. This is 
followed by a discussion of the two-phase experimental design which was employed for 
evaluation. The results of the experimentation are then presented, and subjected to an in-depth 
analysis to determine if algorithm preference is a function of the environmental factors present. 
Finally, we draw some conclusions regarding the relative performances of each approach.

Algorithm Descriptions
The four algorithms evaluated include the following: the Wagner-Whitin k-continuous, constrained 
(WW-KCC) (Blackburn and Millen, 1982a, 1985); the McLaren-Whybark Wagner-Whitin (MW-WW) 
(McLaren, 1976; McLaren and Whybark, 1976); the Simple Average Least Total Cost (SALTC) 
(Rehmani and Steinberg, 1982); and the Sequential TOPS with Incremental Look-Down (STIL) 
(Coleman and McKnew, 1991). The first three methods augment the ordering (setup) and/or 
holding costs used at each level to better reflect the dependencies that lower level items have on 
decisions made for items higher up in the product structure. The fourth heuristic also uses modified 
costs, but also employs specific “look-down” features to aid in decision making for items higher up 
in the product structure. A brief overview of the characteristics of each algorithm is provided below; 
the reader is referred to the cited works for detailed discussion of how each method is used.

The WW-KCC approach (Blackburn and Millen, 1982a, 1985) is a modified sequential Wagner- 
Whitin (WW) (Wagner and Whitin, 1958) application presented by Blackburn and Millen in which 
both the order/setup and “echelon” (marginal) holding costs are modified. Information from all of a 
given item’s components is included in the modified cost estimates for that item. Revised setup and 
echelon holding cost calculations are made from the lowest level items up the product structure to 
the end item. The modified setup and echelon holding costs are then used in conjunction with a 
sequential pass of WW to determine solutions. An advantage of this approach versus many others is 
its “structure-deep” consideration of an item’s components when determining modified costs.

Like the Blackburn and Millen heuristic, the MW-WW method (McLaren, 1976; McLaren and 
Whybark, 1976) is another modified sequential WW method presented by McLaren and Whybark 
in which only the ordering (setup) costs are adjusted for each item. Each item’s setup cost is 
adjusted by adding to it the “Time-Between-Orders ratio-adjusted” setup cost of each of its 
immediate components. Following these cost modifications, Wagner-Whitin is applied sequentially 
from the top to the bottom of the product structure using the adjusted setup costs and unadjusted 
full-value holding costs. MW-WW is not a “structure-deep” heuristic, as it only uses cost 
information from components at the very next level when making a given lot sizing decision.

The SALTC approach (Rehmani and Steinberg, 1982) combines a sequential application of the Least 
Total Cost (LTC, or Part Period Balancing without look ahead, look back) heuristic with a modified 
version of the well-known Economic Part Period (EPP) ratio to make order decisions. The novelty of 
SALTC is in the modification of the cost ratio rather than individual costs. The simple average (SA) of the 
EPP of each item and those of all its immediate components is employed. As with MW-WW, SALTC 
also considers information only from the next lower level when revising cost inputs. SALTC was shown 
to be superior to MW-WW in the somewhat limited experimentation in (Rehmani and Steinberg, 1982).

The STIL algorithm (Coleman and McKnew, 1991) is a one-pass heuristic founded upon the 
Technique for Order Placement and Sizing (TOPS) single-level routine (Coleman and McKnew, 
1990), an approach which has been shown to closely emulate single item optimality. STIL is a 
modified sequential application of TOPS, in which the ramifications of a given lot sizing choice on 
component item costs are analyzed before an action is taken. This analysis is done by way of two
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“look-down” features. STIL is the only known single pass heuristic presented in the literature with 
specific features which attempt to account for lower level ramifications during its execution. All 
other methods, including the three just described, make adjustments to heuristic inputs (costs) 
prior to application, leaving the procedure itself unchanged.
Experimental Design

In an effort not to bias the analysis in favor of a particular method, the experimentation was divided 
into two phases. The first set of problems, which will be referred to as Phase I, was designed to 
replicate much of the design used by Blackburn and Millen when presenting WW-KCC (Blackburn 
and Millen, 1982a, 1982b, 1985). The parameters used in Phase I were also similar to those 
described by Graves in another multilevel lot sizing study (Graves, 1981). Table I outlines the Phase 
I experimentation. The second part, referred to as Phase II, utilized design factors consistent with 
those used by Coleman and McKnew in the presentation of the STIL heuristic, and to those used by 
LaForge and Veral and LaForge in their lot sizing analyses (Coleman and McKnew, 1991 ; LaForge, 
1985; Veral and LaForge, 1985). Table II summarizes the Phase II experimentation. Phase I 
incorporated the product structures shown in Figure 1, and Phase II employed the 1:1 production 
ratio structures exhibited in Figure 2, and the mixed production ratio structure shown in Figure 3.

It should be noted that a significant portion of the original Blackburn and Millen design elements 
were very similar to those from Coleman and McKnew. In response, the Phase I examples 
reflected those Blackburn and Millen factor settings that were different. The combination of Phase 
I and Phase II experimental problems represented a comprehensive coverage, within which each 
method’s strengths and weaknesses had an opportunity to be revealed.

Table 1. Phase 1 Experim ental Design Factors and Factor Levels (All F ive-Item , 12-Period 
P roblem s w ith 1:1 Production Ratios).

Factor I 0 Number of Levels Level Descriptions
Product Structure Configurations 5. 2, Two 3, 4, and 5 Level Structures
Ordering (Setup) Costs Randomized Uniform [50, 300, 600,15001(a)
Echelon Holding Costs Randomized Uniform [0.1,0.5,1.0, 2.01(a)
Demand Variation 3 U[0,200]; NID(ji=100,a=20);

of 0.8, 0 with probability of 0.2b

Notes: (a) Twenty-five combinations of ordering (setup) and holding costs were used. The echelon 
holding costs for all stage 5 items were set equal to 1.00.

______ (b) Three replications of each level of demand variability were used._____________________

Table II. Phase II E xperim enta l Design Factors and Factor Levels (All N ine-Item , 52-Period 
Problem s).

Factor Number of Levels Level Descriptions
Product Structure Configurations 4 3, 4, 5, and 6 Level Structures
Ordering (Setup) Cost Factors 3 0.4, 0.6, and 0.8 (a)
Holding Cost (Value-Added) Factors 6 1.1,1.2,1.3,1.4,1.6, and 2.0(b)
Production Ratio Arrangements 2 1:1 and Mixed
Coefficients of Demand Variation 3 0.31, 0.75, and 1.16(c)

for each item along the longest branch in the given product structure was determined by multiplying the 
ordering (setup) cost of its immediate component by the ordering (setup) cost factor. Ordering (setup) 
costs for all other items in the structure were similarly calculated by multiplying the ordering (setup) cost 
of their immediate component by the order cost factor.

(b) Holding costs were computed by simply multiplying the total holding costs of an item’s immediate 
components (accounting for production ratios) by the respective holding cost factor.

(c) To provide replication, three randomly generated demand streams were derived from a normal
distribution with mean 92.0 for each of the variability parameters._________________________________
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Figure 1. Product Strutures Used in Phase I Experimentation

Figure 2. One-to-One Production Ratio Product Structures Used in Phase II Experimentation

Figure 3. Mixed Production Ratio Product Structures Used in Phase II Experimentation
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Solutions for all problems were derived according to the four heuristics discussed. The response 
variable of interest in both phases was total ordering (setup) and holding costs (based on ending 
inventory) of solutions yielded by each method. As in multiple other lot sizing studies, a cost index 
was calculated for each algorithm for each test case (Blackburn and Millen, 1982a, 1982b, 1985; 
Coleman and McKnew, 1991 ; Veral and LaForge, 1985). This was done by dividing a heuristic’s total 
cost by the total cost of the algorithm chosen as the benchmark. The heuristic used as the 
benchmark was the one showing the overall lowest mean cost across all test cases. Besides mean 
cost, other aggregate total cost criteria used included maximum improvement over the benchmark 
algorithm, maximum penalty (deficit) versus the benchmark algorithm, and the frequency of test 
problems in which the algorithm performed better than the benchmark. Each of these were examined 
from an overall standpoint, with mean cost results also broken down by factor levels in each phase.

A secondary response variable of interest in the present study was computational time required to 
reach solutions. However, it should be noted that no practical differences in computational time were 
shown for the four algorithms. For the largest cases, average times for the WW-based algorithms were 
on the order of 1 second of real time when executed on an IBM PS/2 Model 50Z (80286 processor) 
equipped with a math coprocessor. STIL times averaged about one to two tenths of a second faster, 
with SALTC averaging about one-half second in duration. The most efficient WW code available in the 
literature was employed (Saydam and McKnew, 1987). Even using the relatively slow 80286 processor, 
all of the times met the efficiency criteria necessary for use in large scale MRP research experiments.

Experimentation Results
Phase I Overall Results
Table III summarizes the average total cost produced by each technique across all 1125 Phase I 
problems. Indexed solutions shown reflect the average deviation from a STIL basis of 1.0, as this 
method was shown to exhibit the overall lowest average cost. Indices were computed by simply 
dividing the cost solution yielded by the heuristic for each example by the STIL total cost, and 
subsequently averaging over all cases. Table IV summarizes the relative quality of solutions for each 
heuristic for all one-way factor levels, once again assuming a STIL base index of 1.0 in each instance.
Table III. Sum m ary S tatistics for 1125 Phase I P roblem s Using STIL as Basis (STIL Mean C ost = 
14,937.78).

PERFORMANCE MEASURE WW-KCC
HEURISTIC

MW-WW SALTC
Mean Cost 15,278.38 15,165.49 17,631.15
Avq. Index (STIL=1.0) 1.024 1.018 1.188
Percent of Time 
Better Than STIL (a)

21.4%
(n=241)

19.1% 
(n=215)

1.0%
n=11)

Percent of Time 
Worse Than STIL (a)

48.7%
n=548)

61.2%
(n=689)

97.8% 
(n=1100)

Maximum Improvement 
Over STIL Algorithm 
(Index)

1199.80
(.928)

002.00
(.948)

668.00
(.958)

Worst Performance 
Versus STIL Algorithm 
(Index)

8645.00
(1.619)

1825.50
(1.191)

18,683.00
(1.982)

Average Improvement 
Over STIL Algorithm 
When Better 
(Average Index)

259.84
(.984)

255.41
(.985)

297.32
(.981)

Average Deviation 
From STIL When STIL 
Better
(Average Index)

813.49
(1.056)

451.51
(1.033)

2757.56
(1.192)

Note: (a) STIL and WW-KCC generated identical costs on 336 occasions (29.9% of the time). STIL and MW-WW 
generated identical costs on 221 occasions (19.6%).STIL and SALTC generated identical costs on 14 
occasions (1.2%).
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Table IV. Mean Indexed Solutions by Factor Levels for 1125 Phase I Problems (All STIL lndices=1.0).

Product Structure Depth (n=225):

Demand Variation (n=375):

Level
STIL

MeanCost WW-KCC MW-WW SALTC
5(a) 15,445.66 1.078 1.038 1.127
4 5,147.92 1.033 1.032 1.196
3 14,661.01 .997 1.010 1.266
3 14,882.51 1.003 1.010 1.131
2 14,551.79 1.007 .998 1.220
1(b) 14,420.06 1.024 1.017 1.205
2 15,977.81 1.019 1.014 1.166
3 14,415.46 1.028 1.022 1.193

Notes: (a) Levels in product structure.
(b) Level 1=U[0,200]; 2=NIDfti=100,q=20); 3=NID(|n=125,q=20), zero with probability=.20._______________

Several items from Table III are of interest. Firstly, in terms of mean overall cost performance, 
there was virtually no difference between the top three algorithms, STIL, MW-WW, and WW-KCC, 
with each of these exhibiting overall mean costs far superior to (i.e., approximately 19% lower 
than) the SALTC heuristic. However, even though the overall average differences between the 
three best methods were negligible, the other aggregate measures were in favor of the STIL 
benchmark. Versus all three other algorithms, it exhibited a better cost solution far more often 
than it generated a worse solution. STIL at times drastically improved the WW-KCC by $8645 
(approximately 62 percent), MW-WW by $1825.50 (about 19 percent), and SALTC by $18,683.00 
(over 98 percent), while the largest improvement of all of the other algorithms over STIL was 
between four and seven percent. When STIL did generate a worse solution than another 
algorithm, its average cost was maintained well within two percent. The average relative 
performances of WW-KCC, MW-WW, and SALTC were much worse when STIL was superior.

Phase I Sensitivity Analysis
The Phase I experimentation, because of its many randomized elements, did not lend itself to 
extensive examination of the impact of various factors. Table IV lists the results for the two controlled 
factors that were present, allowing some additional insights regarding performance consistency. In 
all but two cases, STIL exhibited a mean index better than its three counterparts. In those instances, 
mean cost performance was within three-tenths of one percent of the other method. The table also 
allows for some analysis of the impact of various factors on algorithm performance. Most notably, 
the presence of deeper product structures appeared to enhance the relative performance of STIL 
versus all three other methods. Differences in demand variation did little to change relative results.

Phase II Overall Results
The overall results of Phase II were consistent with those of Phase I, although the magnitude of 
performance differences was not as pronounced. Table V summarizes the relative cost 
performance of all Phase II problems, using the same format as in Table III. Once again, no 
practical differences in overall mean cost were exhibited among the three best algorithms, with 
SALTC lagging far behind. In fact, SALTC’s relative performance declined phenomenally in Phase 
II, with costs which at times were on the order of nearly fifteen times higher.

The advantage STIL claimed in Phase I in terms of the frequency of best performance was 
reversed in Phase II in favor of WW-KCC, but was maintained at similar levels versus MW-WW 
and SALTC. As in Phase I, STIL’s maximum and average improvements over the other methods 
exceeded the maximum and average deficits it exhibited when beaten. STIL, on average, was 
well within 1% of the best algorithm when another method was better, while MW-WW and WW- 
KCC yielded respective average deficits of 1.4% and 3% when STIL was better. Perhaps the only 
criteria which clearly and significantly favored a particular algorithm was the maximum 
improvement gained. STIL was never surpassed by more than four and a half percent, but at 
times improved WW-KCC by more than 19% and MW-WW by over 11%.

Factor
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Table V. S um m ary S ta tistics for 1,296 Phase II P roblem s Using STIL as Basis
(STIL M ean C ost = 7639.54).

HEURISTIC I
PERFORMANCE MEASURE WW-KCC MW-WW SALTC
Mean Cost 7729.02 682.47 15,281.21
Avg. Index
(STIL=1.0) .009 1.006 1.839
Percent of Time 4.6% 38.2% 00.0%
Better Than STIL (a) (n=708) (n=495)
Percent of Time 43.7% 61.4% 100.0%
Worse Than STIL (a) (n=566) (n=796)
Maximum Improvement 307.60 265.60 -
Over STIL Algorithm (.956) (.956) -
(Index)
Worst Performance 1911.70 953.60 135,981.30
Versus STIL Algorithm (1.190) (1.112) (15.083)
(Index)
Average Improvement 53.62 48.06 -
Over STIL Algorithm (.992) (.993) -
When Better
(Average Index)
Average Deviation 271.97 99.79 7641.67
From STIL When STIL (1.030) (1.014) (1.839)
Better
(Average Index)

Note: (a) STIL and WW-KCC generated identical costs on 22 occasions (1.7%). STIL and MW-WW generated
identical costs on 5 occasions (0.39%).

Phase II Sensitivity Analysis
The more structured factor levels in Phase II allowed for a more thorough analysis of the impact 
of environmental factors on relative solutions. Table VI indicates that, as before, demand 
variability changed relative performance very little. The same can be said for the ordering (setup) 
cost factor, even though higher levels tended to favor WW-KCC and MW-WW to a small degree. 
Unlike as in Phase I, increased product structure depth did not play a major, consistent role in 
relative cost performances, save possibly for MW-WW.

What was important in determining relative quality of solutions was the holding cost (value-added) 
factor, and the presence of mixed versus 1:1 production ratios. Both WW-KCC and MW-WW were 
slightly improved over STIL for the highest holding cost factors, with relative performances which 
got monotonically worse as the factor approached 1.0. WW-KCC also showed stronger 
performance than STIL for 1:1 production ratio problems, while mixed ratios severely hampered 
what was at least a “reasonable” (although still a 23% higher cost) performance for SALTC for 1:1 
ratios. When STIL was outperformed for any level of any factor, its average performance was 
within one-half of one-percent of the other algorithm. Contrastingly, the “unfavorable” levels for 
each of the two “delineating” factors for the other three methods yielded average costs which 
were at times more than 2% (MW-WW), 4% (WW-KCC), and 290% (SALTC) worse than STIL.

Further examination reveals the extent to which the production ratios and the holding cost factor 
affected results. The highest three holding cost factors were involved in almost 69% of the cases 
in which WW-KCC generated lower costs than STIL, and nearly 75% of the replications for which 
MW-WW was better than STIL. This was true even though these factor levels were present in 
only one half of the test cases. The impact of the production ratio factor was also pronounced, as 
production ratios of 1:1 were present approximately 64% of the time that WW-KCC performed 
better than STIL.
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Table VI. Mean Indexed Solutions by Factor Levels for 1,296 Phase II Problems(AII STIL lndices=1.0).

STIL
Factor Level Mean Cost WW-KCC MW-WW SALTC
Product Structure 6(a) 6734.31 1.007 .012 1.308
Depth (n=324): 5 7570.95 1.014 1.010 3.115

4 7736.10 .998 1.003 1.463
3 8516.80 1.016 1.000b 1.470

Ordering (Setup) .4 6342.08 1.004 1.002 2.037
Cost Factor (n=432): .6 7519.47 1.010 1.005 1.828

.8 9057.07 1.012 1.011 1.652
Holding Cost 1.1 6823.78 1.044 1.026 1.404
Factor (n=216): 1.2 7189.11 1.018 1.012 1.476

1.3 7482.65 1.002 1.004 1.575
1.4 7712.12 .998 1.001 1.668
1.6 8074.98 .995 .998 1.981
2.0 8554.61 .994 .996 2.931

Coefficient of .31 8196.43 1.006 1.004 1.605
Demand Variation .75 7509.64 1.009 1.006 1.839
(n=432): 1.16 7212.56 1.010 1.008 2.074
Production Ratio 1:1 5803.22 .995 1.005 1.229
(n=648): Mixed 9475.86 1.022 1.007 2.449

Notes: (a) Levels in product structure.
_______(b) Rounded up at the fourth decimal place.

Table VII. C om parative  Perform ance M easures of W W -K C C  and M W -W W  Indexed S olu tions for
Tw o-W ay Interaction Between Holding C ost Factor and Production Ratio A rrangem ent (All STIL
lnd ices=1 .0, n=108 for each cell).

HOLDING PRODUCTION RATIOS
COST 1:1 MIXED
FACTOR WW-KCC MW-WW WW-KCC MW-WW

Average 1.025 1.027
Minimum .976 .968 .991 .998

1.1 Maximum 1.035 1.091 1.190 1.112
STIL Best (%) 62.0% 83.3% 96.3% 98.1%

Average .997 1.011 1.039 1.012
Minimum .956 .956 .990 .991

1.2 Maximum 1.021 1.069 1.119 1.054
STIL Best (%) 43.5% 74.1% 97.2% 93.5%

Average .992 1.003 1.013 1.005
Minimum .961 .968 .983 .991

1.3 Maximum 1.019 1.039 1.070 1.021
STIL Best (%) 20.4% 56.5% 76.9% 77.8%
Average .993 1.001 1.002 1.002
Minimum .973 .978 .987 .986

1.4 Maximum .023 1.032 1.024 1.014
STIL Best (%) 25.0% 50.0% 53.7% 68.5%

(1 same) (2 same)
Average .993 .997 .997 .999
Minimum .975 .975 .988 .988

1.6 Maximum 1.009 1.015 1.005 1.007
STIL Best (%) 2.0% 38.0% 19.4% 51.9%

(1 same) (1 same) (5 same) (1 same)
Average .992 .994 .997 .997
Minimum .966 .969 .981 .981

2.0 Maximum 1.005 1.015 1.001 1.003^
STIL Best (%) 9.3% 24.1% 8.3% 21.3%

(4 same) (1 same) (7 same) (2 same)
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Given that the production ratio and holding cost factors were the most important in defining 
differences between the leading algorithms in Phase II, the analysis was extended to more 
thoroughly evaluate their effects. Table VII summarizes the interaction between the two factors. 
Examination of all rows and columns shows consistent, monotonie improvement in the relative 
mean performance of STIL as the holding cost factor is lowered, and/or as production ratios move 
from 1:1 to mixed. The exact inverse is true for WW-KCC and MW-WW. The most dramatic 
differences in performance are shown when each factor is at the “favorable” level for each 
algorithm. With 1:1 production ratios and a holding cost factor of 2.0, both WW-KCC and MW-WW 
exhibit their best performances. Conversely, with mixed ratios and a 1.1 cost factor, STIL 
performs at its highest level. However, in comparing these two cases, as well as those throughout 
the table, the overall comparison favors STIL. For example, in WW-KCC’s most favorable 
environment, STIL’s average cost was well within 1% of WW-KCC, its maximum deficit was 3.4%, 
and it improved WW-KCC 10 of 108 times. In contrast, in STIL’s most favorable situation, WW- 
KCC’s average cost was over 8% worse on average, its maximum deficit was 19%, and it 
improved STIL four times. Very similar remarks can be made for MW-WW.

Summary and Conclusions
The relative cost performances of four algorithms efficient enough for lot sizing in multilevel MRP 
simulation studies were compared. These included two modified cost Wagner-Whitin methods 
(WW-KCC and MW-WW), a modified cost Least Total Cost method (SALTC), and a TOPS-based 
method which incorporates both modified costs and look-down features (STIL). The criteria used 
in the evaluation of the four heuristics reflected the preferred characteristics of strength and 
consistency of cost performance.

Given the extremely similar overall mean cost results of the top three methods, and to a large 
extent the similarity of mean costs for many of the factor levels, the maximum penalties (i.e., the 
measure of performance consistency across all experimental conditions) emerged as the 
predominant delineating factor in the present study. Given this as the determinative criteria, the 
experimentation favored STIL over WW-KCC, MW-WW, and SALTC, across both phases of the 
experimental design. Its maximum deviation from the best algorithm in any case, in either phase, 
was 7.2%. In contrast, WW-KCC was surpassed at times in Phase II by 19%, and MW-WW on 
occasion by over 11%. These figures were even more pronounced in Phase I, where WW-KCC 
and MW-WW experienced deficits of approximately 62% and 19%, respectively. Although 
changes in some factor conditions affected the magnitude of these results, STIL never was a poor 
alternative. The same could not be said of the remaining algorithms. This was not only true of 
WW-KCC and MW-WW, but especially so for the SALTC heuristic, for which it was particularly 
interesting to note the incredibly severe impact that mixed production ratios had on its 
performance. Consolidation of the results from both phases suggest that STIL’s closest 
competition, WW-KCC and MW-WW, while very similar in overall mean costs, are much more 
volatile in their relative performances.

Therefore, the experimentation performed here points to STIL as the most effective and 
consistent alternative for use in research on other MRP issues, such as that now being performed 
in the area of master production schedule freezing. When viewed in conjunction with (Coleman 
and McKnew, 1991), the results here suggest that STIL can be relied upon to generate near- 
optimal lot sizing solutions in the types of experimental environments commonly found in other 
MRP research. Moreover, the differences between its computational requirements and that 
required of a sequentially applied single item method such as least total cost are inconsequential 
(e.g. averaging less than one half of a real-time second for the problems and hardware used 
here). As such, its employment is suggested as a means of minimizing any lot sizing bias that 
may result from the use of much more sub-optimal routines.
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