


La présupposition traditionnelle en ce qui
concerne l’offre endogène de travail dans des
modèles de croissance économique est que
l’utilité augmente avec le loisir et ce, 
indépendamment de l’affectation spécifique
de temps de l’agent représentatif à un
moment donné. Dans cet article, nous 
exploitons les conséquences, sur la stabilité
dynamique, du fait d’assumer que l’agent 
préfère ne pas avoir trop de temps libre,
c’est-à-dire, de considérer que l’utilité 
marginale du loisir n’est pas nécessairement
positive pour une quelconque valeur de son
pourcentage de temps de loisir (notamment,
pour des valeurs élevées de ce 
pourcentage). En incluant cette 
présupposition dans un modèle de 
croissance endogène AK typique, nous
constatons que le système tendra à rester,
indépendamment des valeurs de paramètres,
sur une ligne de bifurcation. 

The traditional assumption concerning
endogenous labor supply in models of 
economic growth is that utility increases with
leisure, independently of the specific time
allocation of the representative agent
observed at a given moment. In this note, we
explore the consequences, over dynamic 
stability, of assuming that the agent dislikes
having free time in excess, i.e., of 
considering that the marginal utility of leisure
is not necessarily positive for every value of
the leisure share (in particular, for high 
values of this share). By including this
assumption in a typical AK endogenous
growth model, we find that the system will
rest, independently of parameter values, on 
a bifurcation line.

Classificação JEL: O41, J22, C61.

O pressuposto tradicional no que respeita
à oferta endógena de trabalho em 
modelos de crescimento económico é o
de que a utilidade aumenta com o lazer,
independentemente da afectação 
específica de tempo do agente 
representativo num dado momento. Nesta
nota explora-se as consequências, sobre
a estabilidade dinâmica, de assumir que o
agente prefere não ter tempo livre em
excesso, isto é, de considerar que a 
utilidade marginal do lazer não é 
necessariamente positiva para qualquer
valor da sua percentagem de tempo de
lazer (em particular, para valores elevados
desta percentagem). Ao incluir este 
pressuposto num modelo de crescimento
endógeno AK típico, revela-se que o 
sistema tenderá a permanecer, 
independentemente dos valores de
parâmetros, sobre uma linha de 
bifurcação.

resumo résumé / abstract

Orlando Gomes* Escola Superior de Comunicação Social; UNIDE/ISCTE -ERC

Dezembro '07 / (6/14)

6
7

When Leisure Becomes Excessive: 
A Bifurcation Result in Endogenous Growth Theory

* Acknowledgements: Financial support from the
Fundação Ciência e Tecnologia, Lisbon, is 
gratefully acknowledged, under the contract No
POCTI/ECO/48628/2002, partially funded by the
European Regional Development Fund (ERDF). 
I am also grateful for the relevant comments and
guidance given by an anonymous referee and by 
the journal’s editor.
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In modern societies it is legitimate to ask whether there is always a positive relation between
leisure and the utility leisure brings. Unemployed people or people working at partial time often
dislike having too much free time and most of us find personal realization and social recognition
in work. This idea is not taken into account by macroeconomic models, namely the models of
growth and business cycles in which the endogenous determination of the labor-leisure choice is
central to the analysis (among many others, these models include Stokey and Rebelo, 1995;
Ortigueira, 2000; and Duranton, 2001).

In this note, we explore the consequences of assuming that the representative agent prefers an
intermediate share of leisure time than extreme values (no leisure or too much leisure). These
consequences are addressed under an endogenous growth setup. Interesting dynamic results are
obtained in what concerns, both, transitional dynamics and the long term balanced growth path.

The argument we propose is not uncontroversial and it should be understood in relative terms.
Some societies value leisure more than others and, thus, the point in which individuals begin to
withdraw less utility from leisure as leisure rises varies from one social context to another. For
instance, Glaeser, Sacerdote and Scheinkman (2003) and Blanchard (2004) highlight the 
difference in hours worked in Europe and North-America; the difference can be explained, in the
view of these authors, by a cultural predilection for leisure that has gained weight in Europe since
the 1960s. Americans work more hours not only because this allows them to increase their
income but also because there is a cultural context that inhibits individuals from getting utility
from leisure when they do not participate or participate scarcely on the effort of creating value to
the economy they belong to. Although this seems a more pronounced tendency in North-America
than in Europe, this is indeed a trend that we can identify all over the developed world. 

The note is organized as follows. Section 2 describes the model’s features, section 3 addresses
the properties of the steady-state, section 4 analyzes local stability, and section 5 concludes.

Assume a representative agent that maximizes the following sequence of utility functions over an
infinite horizon,

(1)

In expression (1), ct ≥ 0 stands for the real level of consumption and Lt [(0,1] is the share of the
agent’s time allocated to leisure; we let Lt ≡ 1-lt , and hence we designate the share of time 
allocated to work by lt. Parameter 0 < b < 1 is the discount factor. The utility function takes the
following functional form,

(2)

Under function (2), consumption and leisure produce utility separately. Concerning consumption,
marginal utility is positive and diminishing, as conventionally assumed. In what respects leisure,
we consider that utility rises with leisure when the time allocated to working hours is relatively
high, but as the unoccupied time increases the utility withdrawn from leisure falls – the 
representative agent dislikes having too much free time. Parameter m measures the weight of
leisure utility in the overall utility function. In the extreme case in which m = 0, function (2)
reduces to U (ct ) = ln(ct ), i.e., the representative agent withdraws utility only from consumption.
The larger the value of m, the more the agent attributes relevance to the role of available time in

U0 = ^
+∞

t=0
b t.U(ct , Lt )

1. Introduction

2. A Model of Excess of Leisure

U(ct , Lt ) = ln 1 2 , m > 0ct}
Lt   

m .Lt



terms of the accomplished level of utility. Thus, utility function (2) can be interpreted as follows: it
is an additively separable function with respect to its two arguments and the only unconventional
assumption is that positive marginal utility of leisure lasts only until some threshold value; after
that, additional leisure leads to decreasing utility.

While we will work, for analytical convenience, with the functional form in (2), it is useful to admit
that this function belongs to the following generic class of utility functions: U : IR + 2 → IR, where
the following partial derivatives hold, (i) Uc > 0; (ii) Ucc < 0; (iii) UL > 0 if U (c-, Lt ) < z, UL < 0 
if U (c-, Lt ) > z , (with z a positive value below unity); (iv) ULL < 0; finally, (v) UcL = ULc = 0. 

Figure 1 represents the relation between leisure and utility for a constant level of consumption 
c- = 1. In the limit circumstance in which the agent does not work at all, she will not withdraw any
utility from the free time she possesses.

The resource constraint is a trivial capital accumulation equation,

kt +1 = y~t - ct + (1 - d) · kt , k0  given   (3) 

Variable kt ≥ 0 respects to the stock of physical capital, 0 ≤ d ≤ 1 is the rate of capital depreciation
and y~t stands for the effective level of income. This last variable is considered in contrast with
the potential level of income, which is given by a constant returns production function, i.e., 
yt = Akt , with A > 0 the level of technology. The potential level of income is defined as the output
that is generated when the available working hours are integrally used in production. Normalizing
the amount of the agent’s time to 1, the amount of effective working hours is lt. Therefore,
assuming that production is proportional to the number of hours worked, we should consider 
y~t = Alt · kt . As with the consumption function, the production function is just a particular form of 
a more general specification one can account for: y~t  = f(lt , kt ), with f : IR  + 2→ IR +, and 
(i) fl  > 0, (ii) fll = 0, (iii) fk > 0, (iv) fkk = 0, (v) fkl = flk (equal to a positive constant).

We choose to develop the model in discrete time, but the same type of theoretical structure 
could be implemented in continuous time. One should not expect to find significant differences 
relatively to the results we will obtain in the following sections if, instead of taking the 
maximization of (1) subject to (3), we took the maximization of U0 = E+∞

0
exp ( - r ·t) ·U [c(t), 

L(t)] · dt subject to k·(t) = y~(t) - c(t) - d · k(t). In this problem, c(t), L(t), l(t), y~(t) and k(t) are the 
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Figure 1 – The utility of leisure

U (c-, Lt )

m · exp(-1)

exp(-1) Lt



continuous time versions of the presented variables; r > 0 is the rate of time preference [the
counterpart of this parameter in discrete time is r = (1 - b)/b]; k·(t) = dk(t)/dt refers to the time
variation of the capital stock; effective output is y~(t) = f [l(t), k(t)].

Let pt be the co-state variable of kt . The current-value Hamiltonian function of the proposed
problem is: 

: (kt , pt , ct , Lt ) = U (ct , Lt ) + b ·pt +1·(y~t - ct - d ·kt )

First-order conditions are,

:c = 0 ⇒ b ·pt +1 = ct
-1

: l = 0 ⇒ m · [1 + ln(Lt )] + b ·pt +1 ·A ·kt = 0 

b ·pt +1 - pt = -:k ⇒ pt = (1 + A · lt - d) ·b ·pt +1

lim
t→ +∞

kt ·bt ·pt = 0   (transversality condition)

Under an endogenous growth setup, we define the steady state as the long run locus in which: i)
the labor share is constant, l* ≡ lt+1 = lt , and ii) consumption and capital grow at a same rate, 

; the second point is a straightforward consequence of the first, given the shape 

of constraint (3). This is the standard way in which the steady state is defined in endogenous
growth models. See in this respect, for instance, McGrattan (1998), Milesi-Ferretti and Roubini
(1998) or Gómez (2003: 411); this last one clearly states that ‘Along the balanced growth path,
consumption, investment in physical and human capital, and the stocks of physical and human
capital grow at the same constant rate g, and factor allocations remain constant’.

Proposition 1. The steady state exists and it is unique.

Proof: Let γ > -1 be the growth rate of kt and ct in the steady state. Hence, we can define 

variables that do not grow in the balanced growth path, and                 . From the 

optimality conditions, after replacing the original variables by  ^kt and  ^ct , we get the following system,

(4)  

(5) 

with
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3. Steady-State Existence and Uniqueness

≡ = ct}kt

ct+1}kt+1

c*}
k*

^kt ≡ kt}
(1 + γ)t

^ct ≡ ct}
(1 + γ)t

c^t+1 = · (1 + A · lt+1 - d) ·c^t
b

}
1 + γ

k^t+1 = · k^t - ·c^t
1}}

1+γ
1 + A · lt - d}}

1 + γ



Computing steady state relations, one obtains

(6)  

(7)

The steady-state exists in the form we have defined it (a constant consumption-capital ratio and
a constant labor share). To confirm that the steady state is unique, one just has to prove that the
growth rate γ is, under (7), a unique value. We have two expressions involving γ. The first one is
a linear function with a positive slope, that starts at -(1 - d) / A (this is the value for which γ = -1);
note that the constraint b · (1 - d) ≤ 1 + γ ≤ b · (1 + A - d) must hold in order for l* to be an 
admissible value. The second expression corresponds to a decreasing function of γ, with l*
tending to 1 when γ tends to -1 and with l* converging to 1 - 1/exp(1) ≈ 0.6321 when γ tends to
infinity. These two lines intersect in one and only one point and, thus, the steady state growth
rate is unique; also unique is the share of time allocated to labor and, according to (6), the 
consumption-capital share. Figure 2 draws the intersection between the two expressions in (7).

We are concerned with understanding if the steady state as defined in the previous section is
achievable independently of initial values (k0, c0) in the vicinity of the steady state, i.e., if there is
local stability. The evaluation of the dynamics in the neighbourhood (k*, c*) of  produces a 
bifurcation result, as stated in proposition 2.

Proposition 2. The system rests on a bifurcation line, i.e., one of the eigenvalues of the
Jacobian matrix of the system is equal to 1. The other eigenvalue locates outside the unit circle.

Proof: Linearizing the system in the steady state vicinity, one obtains:
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lt = 1 -1  exp1 · + 12k^t}
c^t

A}
m

= · (1 + γ)1 - b
}

b
c^*}
k^*

l* = = 1 - 1   exp1 · · + 121
}
1 + γ

b
}
1 - b

A}
m

1 + γ - b · (1 - d)
}}

b ·A

Figure 2 – Growth rate uniqueness

1

-(1 - d) / A

γ* γ

l*

4. Local Dynamics



(8)  

with a ≡ · (1 + γ) > 0 and  s ≡ > 0. The value of s can be more

elegantly presented as s ≡ , if one takes in consideration the steady state

value of leisure L* = 1 - l* =                                      .

System (8) is derived in appendix.

The trace and the determinant of the Jacobian matrix in (8) are Tr (J) = (1 + b) / b and 
Det (J) = 1 / b. Thus, the system rests over the bifurcation line 1 - Tr (J) + Det (J) = 0 and the
eigenvalues of the Jacobian matrix are l1 = 1 and l2 = Det (J) = 1 / b > 1.

Figure 3 sketches the phase diagram of this system. The represented line corresponds to the
isoclines of system (8) (i.e., k^t +1 - k

^
t = 0 and ĉt +1 - ĉt = 0), which are, in the present case, 

coincidental and equal to ĉt - ĉ* = a · (k^t - k^*). As one observes, the steady state will not be
reached, unless the initial point is already the steady-state or if any disturbance on the value of
consumption is provoked by the representative agent.

Because consumption is a control variable, one might expect the representative agent to choose
a level of consumption capable of placing the system on the steady state given by (6) and (7). A
relevant result of the model relates to the location of the steady state value of leisure; it is 
important to clarify in which circumstances this long term optimal value corresponds to a point
in which the marginal utility of leisure is positive or a point such that the referred marginal utility 

is negative. The first case occurs for L* < exp(-1) ⇔              > 0; since A, m and a (the steady

state consumption-capital ratio) are positive, the condition holds. Therefore, a central conclusion
of the proposed setup is that in the long term the economy is located in a point in which an
increase in leisure time implies an increase in utility. We cannot have a steady state leisure share
above 36.79% [i.e., above exp(-1)] as a result of solving the agent’s maximization problem. In
terms of local dynamics, in the vicinity of the steady state, the proposed analysis is not different
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k
^

t +1 - k
^
*

c^t+1 - c
^*

+ s - · 1 + s2
a·s 1-s

1 - b}
b

1}a
1}b= ·

k
^

t - k
^
*

c^t - c^*

1 − b}
b

A ·[(1 - b) · (1 + A - d) - a]
}}}m ·a2 ·b

·1 2
2 

· L*}m
A}a

1 − b}
b

b · (1 + A - d) - (1 + γ )
}}}

b ·A

Figure 3 – Phase diagram

c^t - c^*

k
^

t - k
^
*

a

A}
a ·m



from an analysis of a conventional utility function with leisure, since we are working in the
increasing segment of the utility function (when considering separately each of its arguments). 

We have developed an endogenous growth model with endogenous labor supply. Differently
from the conventional assumption that utility increases with leisure independently of its amount,
we have assumed that leisure in excess is less valued by the representative agent than a 
relatively intermediate level of leisure. The individual does not withdraw too much utility from 
too much spare time. In the limit, if the agent does not work at all, no utility comes from leisure,
exactly as if all the available time was allocated to work.

The imposed assumption allows to find a unique steady state characterized by the existence of a
unique growth rate, which cannot be presented explicitly, and a consumption-capital ratio, that is
as much higher as the higher is the economy’s growth rate; thus, the balanced growth path 
evidences the idea that the more the economy grows, the more the representative agent is able
to consume per unit of physical capital. Another steady state result concerns the labor share: 
the faster is the pace of growth of the economy, the less the representative agent allocates time
to working hours; this can be confirmed by looking at Figure 2. 

The central result is that the unconventional form of the utility function concerning leisure 
produces a bifurcation-instability outcome. Through the linearization of the system around the
steady state, we compute a dimension 2 Jacobian matrix with an eigenvalue equal to 1 and the
other eigenvalue higher than 1. Any form of stability (a stable node, a stable focus or a 
saddle-path stable equilibrium) is ruled out. In fact, this result is the corollary of realizing that the
optimal steady state value of the leisure share has to be located in the increasing sector of the
leisure utility function (i.e., when positive marginal utility from leisure is evidenced). Therefore,
the local analysis will focus on the part of the utility function where this has the standard 
increasing and concave shape and, as a result, a unique stability outcome is accomplished.

The results should be compared with the ones of a similar model with conventional positive
marginal utility of leisure. With an utility function U (ct , Lt ) = lnct + n ·Lt , n > 0, solving the same 

maximization problem, one obtains a constant over time share of labor,  

and a constant consumption-capital ratio               ; consumption and capital grow at rate 

. Therefore, basically, the assumption of leisure in excess introduces 

transitional dynamics over an endogenous growth model that under a trivial framework can be
described as being permanently on a balanced growth path. Furthermore, we understand that
locally the proposed model does not depart from the expected outcome in a trivial growth 
analysis, but it introduces a relevant constraint: the long term optimal result excludes a relative
amount of working hours (below a given threshold value) that induces a decreasing utility from
leisure.
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5. Discussion

lt = A / n - (1 - b) ·(1 - d)
}}}(1 - b) · A

= A}
n

ct}kt
g = · - 1A}

n
b

}
1 - b
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The linearization of equation (4), in the neighbourhood of (K*, c*), yields,

(a1)

Relatively to equation (5), this can be rewritten as,

(a2)

The linearization of (a2) around (K*, c*) allows to write

c^t - c^* = - a · b · s · (k
^

t+1 - k
^
* ) + (1 + b · s) · (c^t +1 - c^* ) (a3)

Having (a1) in consideration, we rearrange (a3) to present it as follows,

c^t+1 - c^* = (a · s) · (k^t - k^* ) + (1 - s) · (c^t - c^* ) (a4)

Equations (a1) and (a4) form system (8).
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Appendix – Derivation of the Linearized System

k^t+1 - k^* = 1 + s2 · (k^t - k^*) - · 1 + s2 · (c^t - c^*)1 - b}b
1}a

1}b

c^t = · · c^t+1
1}}

1 + A · l t + 1 - d
a}

1 - b
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