

NATURA NATURATA

Invertebrados de Água Doce

Chave de Identificação das Principais Famílias

Sónia Serra Nuno Coimbra Manuel Graça

Edição

Imprensa da Universidade de Coimbra Email: imprensauc@ci.uc.pt URL: http://www.uc.pt/imprensa_uc Vendas online: http://siglv.uc.pt/imprensa/

Coordenação Editorial Maria João Padez Ferreira de Castro

> Design António Barros

Pré-Impressão

Carlos Costa

Imprensa da Universidade de Coimbra

Impressão e Acabamento Sereer, Soluções Editoriais

> ISBN 978-989-8074-95-9

ISBN Digital 978-989-26-0430-5

DOI

http://dx.doi.org/10.14195/978-989-26-0430-5

Depósito Legal 297005/09

A elaboração desta Chave de Identificação das Principais Famílias de Macroinvertebrados de Água Doce foi feita com base na obra Invertébrés D'eau Douce: Systématique, Biologie, Écologie dos autores Henri Tachet, Philippe Richoux, Michel Bournaud e Philippe Usseglio-Polatera (2000), nomeadamente a utilização das figuras, com a autorização expressa da editora detentora dos direitos: CNRS Editions, Paris, França.

Prólogo

Este guia surgiu da necessidade de uma ferramenta para conhecer a fauna de macroinvertebrados aquáticos em rios de Portugal e para dar apoio a visitantes do percurso pedestre da zona das minas de São Domingos nas suas visitas à ribeira do Mosteirão. O nível de identificação é muito variável para os diferentes grupos. Para uma identificação mais superficial (por exemplo até à ao nível da ordem), basta uma lupa de bolso e uma pinça para se poder atribuir um nome a um exemplar. No entanto, para uma identificação até ao nível da família e género (quadros que aparecem na chave em fundo bege) será necessária alguma experiência e uma lupa binocular. O público-alvo deste guia são estudiosos da fauna aquática com vários níveis de formação a quem os autores convidam a fazer uma visita a um pequeno rio munidos de uma rede e uma tina branca...

Coimbra, 1 de Julho de 2009

Índice

Introdução	11
Geral	15
Classe Gastropoda	17, 18
Família Ancylidae	17
Família Acroloxidae	17
Família Ferrissiidae	17
Família Planorbidae	17
Família Physidae	17
Família Lymnaeidae	17
Família Neritidae	18
Família Viviparidae	18
Família Bithynidae	18
Família Valvatidae	18
Classe Bivalvia	17, 19
Família Unionidae	
Família Sphaeridae	19
Família Corbiculidae	19
Classe Hirudinea	20
Família Piscicolidae	20
Família Glossiphoniidae	20
Família Erpobdellidae	20
Família Hirudidae	20
Classe Oligochaeta	20, 21
Família Enchytraeidae	21
Família Lumbriculidae	21
Família Tubificidae	21
Família Naididae	21
Família Lumbricidae	21
Família Proppapidae	21
Família Haplotaxidae	21
Classe Arachnida — Ordem Acarina	22
CLASSE CRISTÁCEA	22 23

Família Atyidae	23
Família Astacidade	
Família Cambaridae	23
Classe Insecta	22
Ordem Neuroptera	24
	- /
Ordem Megaloptera	
Família Sialidae	24
Ordem Ephemeroptera	24 25 26
Família Oligoneuriidae	
Família Heptageniidae	
Família Potamanthidae	
Família Polymitarcyidae	
Família Ephemerida	
Família Prosopistomatidae	
Família Caenidae	
Família Ephemerellidae	
Família Ameletidae	
Família Baetidae	
Família Siphlonuridae	
Família Leptophlebiidae	20
Ordem Plecoptera	24, 27
Família Taeniopterygidae	
Família Nemouridae	
Família Leuctridae	
Família Capniidae	
Família Chloroperlidae	
Família Perlodidae	
Família Perlidae	
Ordem Odonata	24, 28, 29
Família Calopterygidae	28
Família Lestidae	28
Família Platycnemididae	28
Família Coenagrionidae	28
Família Gomphidae	
Família Aeshnidae	
Família Cordulegasteridae	
Família Libellulidae	
Família Corduliidae	
Ordem Hemiptera – Sub-ordem Heteroptera	24, 30, 31
Família Nepidae	30

Família Aphelocheiridae	30
Família Mesoveliidae	30
Família Veliidae	30
Família Gerridae	30
Família Hydrometridae	30
Família Pleidae	31
Família Notonectidae	31
Família Naucoridae	30
Família Corixidae	31
Ordem Coleoptera (Larvas)	24, 32, 33
Família Curculionidae	32
Família Helodidae	32
Família Hydrophilidae	32
Família Chrysomelidae	32
Família Psephenidae	32
Família Hydroscaphidae	32
Família Spercheidae	32
Família Elmidae	32
Família Dryopidae	32
Família Hygrobiidae	33
Família Haliplidae	33
Família Gyrinidae	33
Família Dytiscidae	33
Família Noteridae	33
Ordem Coleoptrea (Adultos)	
Família Gyrinidae	
Família Hygrobiidae	
Família Haliplidae	34
Família Curculionidae	34
Família Noteridae	
Família Dytiscidae	
Família Elmidae	
Família Hydroscaphida	
Família Hydrophilidae	35
Família Hydraenidae	
Família Helophoridae	
Família Dryopidae	35
Família Hydrochidae	35
Família Spercheidae	35
Ordem Trichoptera	
Família Hydropsychidae	
Família Ecnomidae	
Família Ryacophilidae	
Família Polycentropodidae	36

Família Philopotamidae	36
Família Psychomyiidae	36
Família Hydroptilidae	37
Família Brachycentridae	37
Família Goeridae	37
Família Thremmatidae	37
Família Sericostomatidae	38
Família Phryganeidae	38
Família Glossosomatidae	38
Família Helicopsychidae	38
Família Molannidae	39
Família Beraeidae	39
Família Leptoceridae	39
Família Lepidostomatidae	40
Família Odontoceridae	40
Família Calamoceratidae	40
Ordem Diptera	
Família Blephariceridae	
Família Cylindrotomidae	
Família Limoniidae	
Família Tipulidae	41
Família Simulidae	42
Família Dixidae	
Família Ceratopogonidae	42
Família Thaumaleidae	42
Família Chironomidae	42
Família Culicidae	
Família Ptychopteridae	43
Família Stratiomyidae	
Família Psychodidae	
Família Syrphidae	
Família Tabanidae	
Família Ephydridae	
Família Anthomyidae	
Família Sciomyzidae	
Família Scatophagidae	
Família Dolichopodidae	
Família Athericidae	44
Família Empididae	44

As sociedades humanas dependem inexoravelmente da água. As grandes civilizações nasceram junto a grandes rios e o colapso de algumas civilizações esteve fortemente relacionado com a falta de água. Praticamente todas as nossas cidades se encontram junto a rios. Os rios e lagos são locais ricos em organismos onde ocorrem processos biológicos importantes para a saúde e funcionamento dos ecossistemas e dos quais beneficiamos directamente. Embora os peixes sejam os organismos mais vulgarmente associados aos rios, um dos componentes importantes dos cursos de água doce são os macroinvertebrados, isto é, invertebrados visíveis a olho nu, como por exemplo os lagostins, os camarões de rio e os caracóis aquáticos. No entanto, a maioria dos macroinvertebrados são insectos, como as libelinhas e os mosquitos, muitos dos quais vivem na água nas fases inicias do seu ciclo de vida, passando para a fase terrestre / aérea no estádio adulto. Outros insectos, como as efémeras, chamam a atenção de quem passa junto a ribeiros pela elegância do seu voo; são insectos aquáticos cujos adultos (voadores) têm uma vida curta, por vezes um único dia (por isso a designação de "efémera"). A diversidade de macroinvertebrados aquáticos é muito elevada. Calcula-se que há mais de 20000 espécies só de dípteros aquáticos e muitas mais espécies deste e de outros grupos estarão ainda por descrever.

O papel funcional dos macroinvertebrados nos rios é muito importante pois alimentam-se de algas, microrganismos e restos vegetais, incluindo as folhas que caem das árvores situadas nas margens, e servem de alimento a outros insectos aquáticos e a muitos peixes com valor comercial ou alimentar. Quando saem da água no estádio adulto podem ser uma fonte importante de alimento para aves e outros animais. Algumas espécies de macroinvertebrados aquáticos têm a capacidade de controlar processos ecossistémicos. Por exemplo, os lagostins podem alterar fluxos de energia nos rios, alterar a turvação da água e a reciclagem dos nutrientes. Por vezes a presença de uma dada espécie pode alterar processos ecológicos importantes, como a produção primária e a decomposição de material orgânico.

Não obstante a nossa dependência da água doce, a quantidade disponível diminui e a sua qualidade deteriora-se a um ritmo alarmante. Os ecossistemas de águas doces estão pouco protegidos e as poucas medidas de protecção existentes ignoram a funcionalidade biológica dos rios ou a ligação entre qualidade biológica das águas e a qualidade ambiental das bacias de drenagem. As espécies aquáticas, e os processos que elas catalisam, são fortemente afectados pelas actividades humanas. Cerca de 90% das espécies de água doce estão citadas como críticas, em perigo de extinção ou vulneráveis em resultado das acções humanas!; 71% das extinções de peixes são atribuídas a alterações de habitats causadas pelo homem.

Os macroinvertebrados aquáticos são muito diversos, abundantes e com uma grande variedade de hábitos de vida. As planárias são vermes com o corpo achatado que se deslocam à superfície dos substratos (pedras, plantas) alimentando-se de outros

^{1 -} Abell R., Allan JD & Lehner B. 2007. Unlocking the potential of protected areas for freshwaters. Biological Conservation 134: 48-63.

organismos de menores dimensões. Há várias espécies em Portugal, mas para a sua correcta identificação é necessário observar os organismos vivos ou narcotizá-los com concentrações crescentes de álcool ou com água gaseificada. Um segundo grupo de vermes que ocasionalmente se encontra nos rios é o dos Nematomorpha, organismos relacionados com os nemátodes aquáticos que podem atingir decímetros de comprimento. São conhecidos popularmente como "cobras de cristal", embora não tenham nada a ver com as cobras ou qualquer vertebrado.

Um grupo muito comum em rios é o dos oligoquetas. O nome destes organismos deriva da presença de poucas (oligo) "sedas" (chaeta) à superfície do corpo. Um representante bem conhecido deste grupo é a vulgar minhoca dos solos. No entanto, os oligoquetas típicos são de menor tamanho, podendo medir apenas alguns milímetros ou centímetros. Estes organismos têm uma distribuição cosmopolita, aparecendo associados principalmente a fundos lodosos, onde se enterram parcialmente no substrato. Os oligoquetas estão colocados num grupo mais vasto conhecido por Annelida, dado o seu corpo ser constituído por anéis. Outros anelídeos comuns nos rios são as sanguessugas (Hirudinea), invertebrados predadores que se diferenciam dos oligochaetas por possuírem duas ventosas, uma na parte anterior e outra na extremidade posterior do corpo e que usam para se fixarem ao substrato e para extrair o alimento do corpo das presas. Tal como acontece com as planarias, as sanguessugas só podem ser correctamente identificadas quanto narcotizadas com dióxido de carbono da água gaseificada ou por adição de pequenas concentrações de álcool.

Os Mollusca (ou moluscos) incluem os caracóis as «lapas dos rios» (Gastropoda), e os bivalves (Bivalvia). Os caracóis e as lapas aquáticos têm uma dieta muito generalizada, ingerindo algas, partículas orgânicas em decomposição e microrganismos aderidos aos substratos (protozoários, bactérias e fungos). Os bivalves encontram-se em locais onde se acumula areia e alimentam-se por filtração de partículas em suspensão da coluna de água. Estas partículas tanto podem ser algas, como bactérias, coimo ainda matéria orgânica.

Os Hydracarina (ácaros aquáticos) podem aparecer em quase todos os tipos de águas e assumem uma grade diversidade de formas, colorações e consistência. São muito fáceis de reconhecer (os únicos com 4 pares de patas), mas muito difíceis de identificar até à família, ou género. O número de espécies descritas para a Europa eleva-se a cerca de 250, sendo a maioria parasita de outros organismos aquáticos.

Ao contrário do que acontece no resto da Europa, os Crustacea (crustáceos) de água doce são relativamente pouco abundantes em Portugal. No entanto podem ser muitíssimo numerosos em nascentes de zonas calcárias. As duas espécies mais comuns em Portugal são o camarão de rio (*Atyaephyra desmaresti*) e o lagostim vermelho da Louisiana (*Procambarus clarkii*). Os camarões de rio podem ser muito numerosos, principalmente junto a plantas aquáticas ou detritos vegetais. Alimentam-se de pequenas partículas de material orgânico depositado sobre os sedimentos ou aderido a plantas aquáticas. O lagostim vermelho é uma espécie invasora que chegou aos nossos rios no fim do século passado e que praticamente invadiu todos os rios do País. Os Amphipoda (anfípodes) são um outro grupo de crustáceos que pode ocorrer em algumas nascentes calcárias ("olhos de água") e que pode estar representado por milhares de indivíduos que se assemelham a camarões de pequenas dimensões.

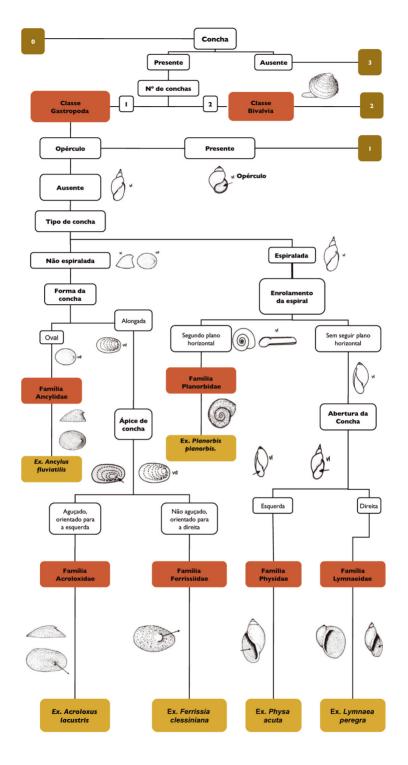
Os efemerópteros são insectos que passam as fases juvenis dentro da água. Com a maturidade, desenvolvem asas e passam à fase aérea, que é geralmente de curta duração. Esta fase pode ser medida em dias ou em horas. Nalguns casos os adultos não possuem mesmo armadura bucal para se alimentar e a sua função está reduzida ao acasalamento e postura de ovos. Nos rios de montanha os efemerópteros são muito diversos e abundantes durante todo o ano. Nos rios de planície do Alentejo, pelo contrário, no Verão quase desaparecem das águas. Um outro grupo de insectos muito

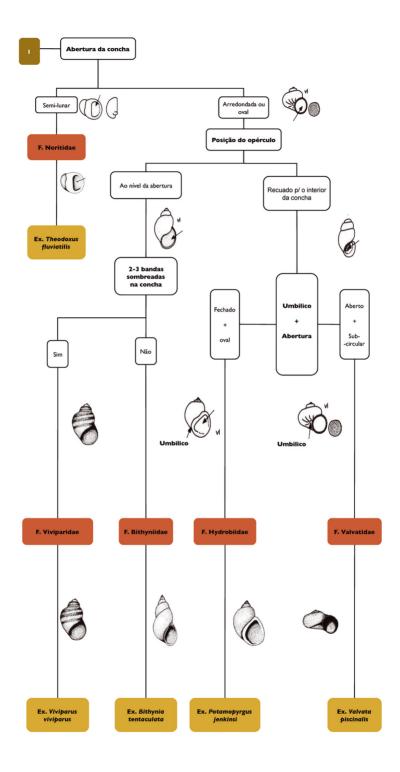
abundante em rios de montanha onde as águas estão bem oxigenadas é o dos plecópteros. Estes organismos são indicadores de águas de boa qualidade, desaparecendo ao mínimo sinal de poluição. Nos rios de planície do Alentejo estão ausentes no Verão devido não à má qualidade das águas, mas à falta de corrente. Tal como acontece com os efemerópteros, os adultos dos plecópteros têm uma fase aérea. Um terceiro grupo de invertebrados primitivos com fases juvenis aquáticas e adultos voadores são os Odonata (libélulas). Estes insectos são predadores vorazes tanto nas fases juvenis como adultas.

Dois grupos de insectos, os Hemiptera e os Coleoptera, podem ser encontrados nas águas tanto nas fases juvenis como adultas. No entanto, os adultos de alguns destes insectos podem sair das águas e voar para outros rios, lagos ou charcos. Alguns vivem à superfície, como é o caso dos "alfaiates" (hemiptera) e girinídeos (coleoptera). Os girinídeos devem o se nome ao facto dos adultos girarem constantemente, criando estrias características à superfície das águas.

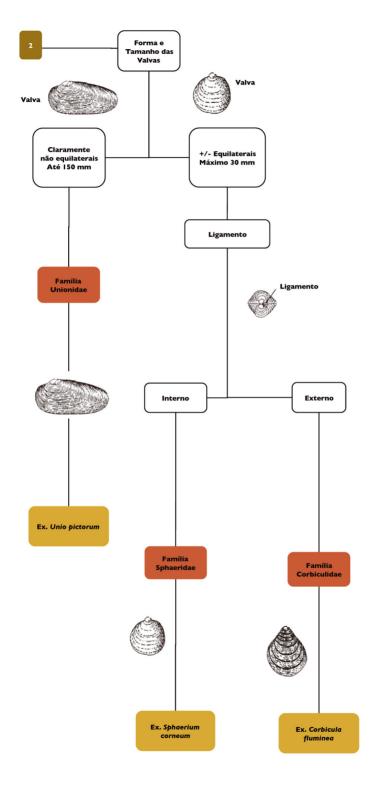
Os Trichoptera (ou tricópteros) são um outro grupo de insectos representativos de rios de águas limpas com fases juvenis aquáticas e fases adultas voadoras. As larvas de algumas espécies têm o comportamento curioso de segregar uma substância sedosa, com a qual constroem redes para apanhar partículas alimentares. Outras aglutinam partículas de areia ou pauzinhos, formando casulos dentro dos quais se alojam. A forma do casulo e a sua constituição diferem entre espécies. Finalmente, os Díptera que se encontram nos rios são também formas imaturas de estágios aéreos de muitos mosquitos. Podem ser muito abundantes em locais onde se acumula matéria orgânica, como é o caso dos Chironomidae, ou em locais de muita corrente, como é o caso dos Simuliidae. A sua taxonomia é muito difícil, mesmo quando se pretende chegar até ao nível de família. A cor vermelha de alguns Chironomidae é dada por um composto semelhante à nossa hemoglobina, o que lhes permite retirar oxigénio das águas, mesmo quando em concentrações baixas.

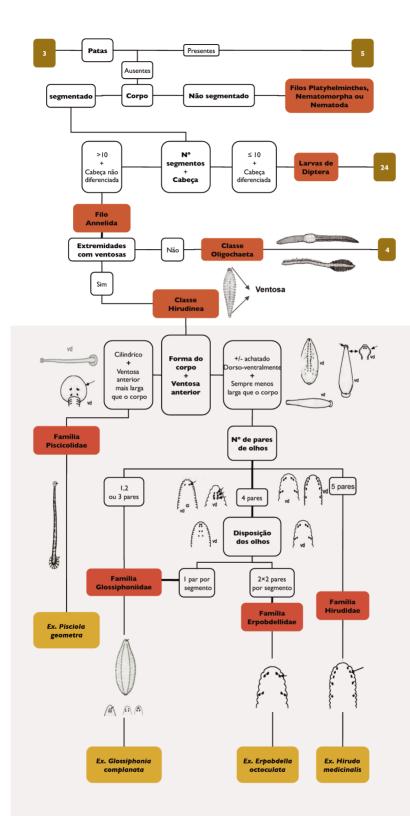
Os macroinvertebrados podem ser recolhidos com redes de mão ou com vulgares coadores de cozinha que se aplicam junto ao substrato dos rios, enquanto se levantam pedras ou se remexem as areias do fundo. As pedras podem ser recolhidas com a mão e nelas podem-se observar alguns invertebrados. Não é necessário ir para zonas profundas, pois a maioria dos invertebrados encontra-se nas margens a menos de 10 cm de profundidade. Quanto mais pequenos os rios, maior a probabilidade de encontrar macroinvertebrados aquáticos. Depois de recolhidos, os invertebrados podem ser colocados em tinas de fundo branco e manipulados com a mão, visto não picarem ou morderem, embora seja muito mais prático usar pinças, pincéis e agulhas entomológicas. Para os identificar, o ideal é colocar os invertebrados em caixas plásticas ou de vidro com um pouco de água. Os invertebrados podem também ser recolhidos e guardados em álcool a 70% num frasco com tampa hermética de forma a serem conservados e poderem ser identificados mais tarde.

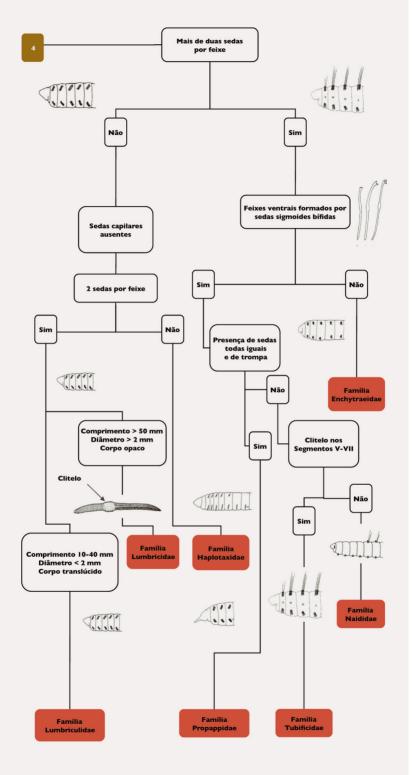

Os organismos vivos são classificados em grandes grupos ou Phyla (e.g. Artrhopoda, Annelida). Dentro de cada Phylum são agrupados em Classes (e.g. Crustacea, Insecta – embora algumas classificações considerem estes dois grupos como subphyla). Por sua vez, dentro de cada classe os organismos são classificados em Ordens (e.g. Plecoptera, Ephemeroptera) e dentro das ordens, em Famílias (e.g. Baetidae, Caenidae). Finalmente, dentro de cada família são agrupados em Géneros (e.g. Baetis, Cloen), podendo cada género ter várias Espécies (e.g. Baetis rhodani, Baetis fuscatus). Muitas vezes é impossível identificar os exemplares até à espécie pelo que a identificação só é feita até ao género, família ou mesmo ordem.

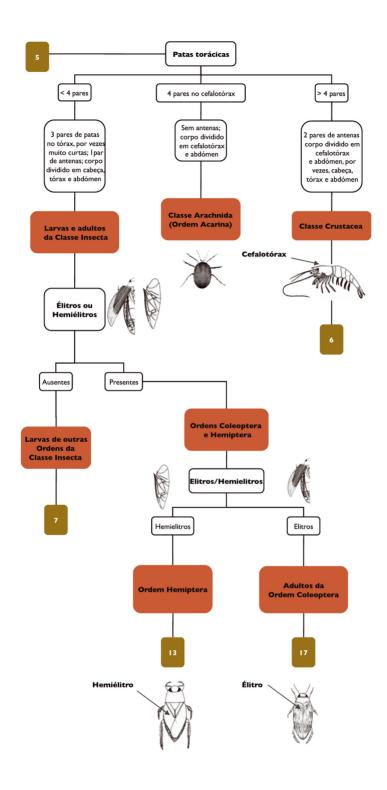


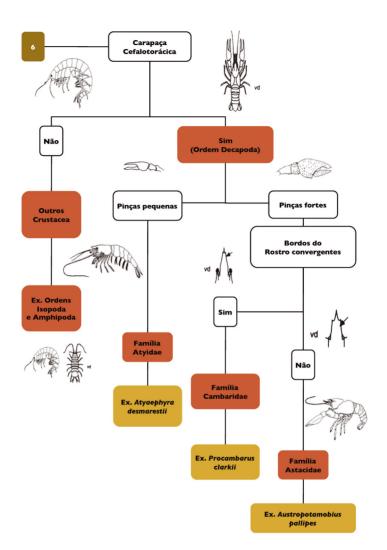
CHAVE DE IDENTIFICAÇÃO DAS PRINCIPAIS FAMÍLIAS DE INVERTEBRADOS DE ÁGUA DOCE

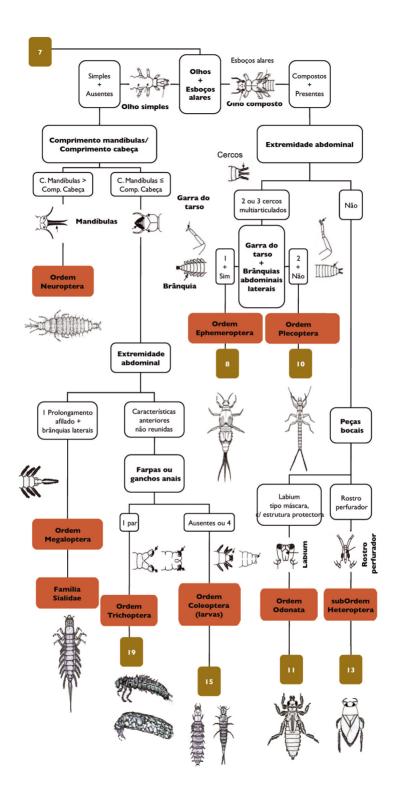


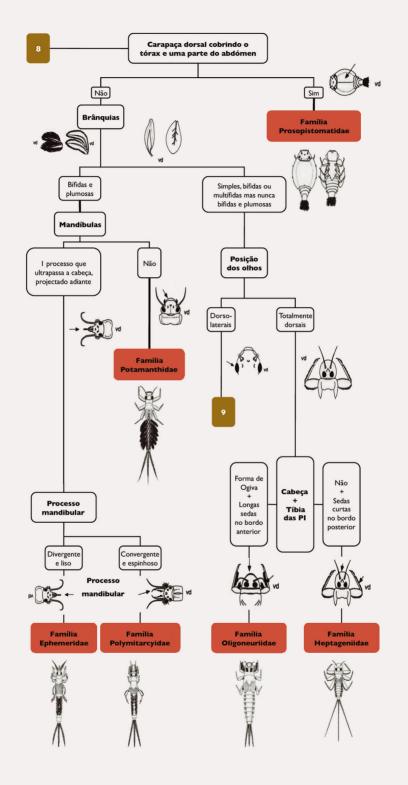


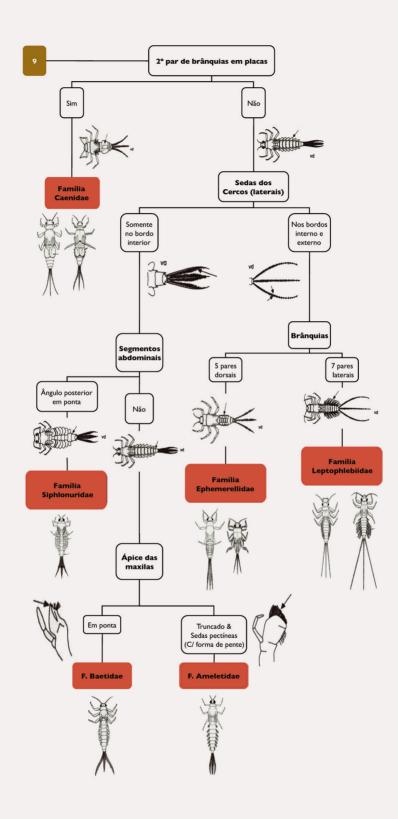


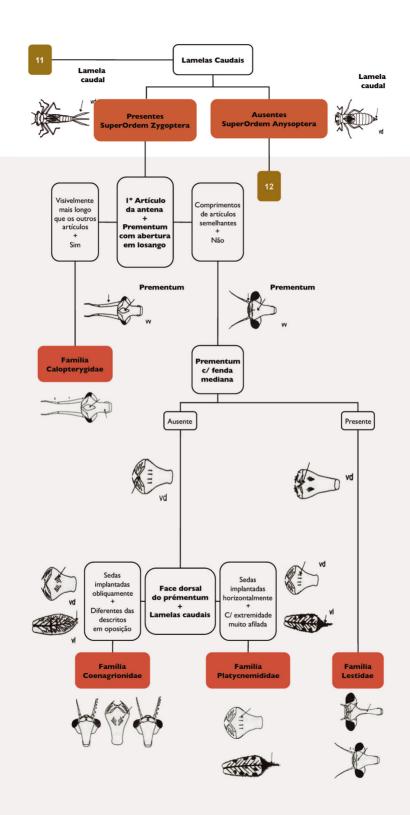


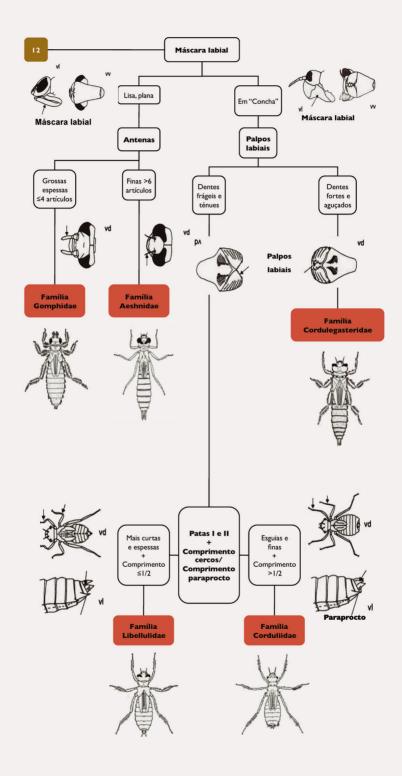


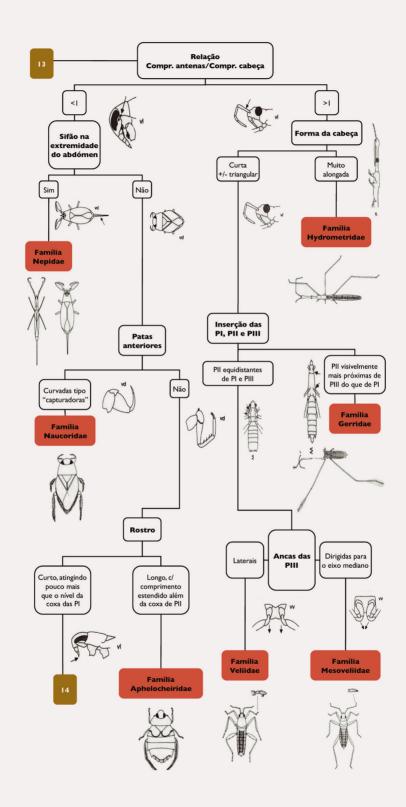


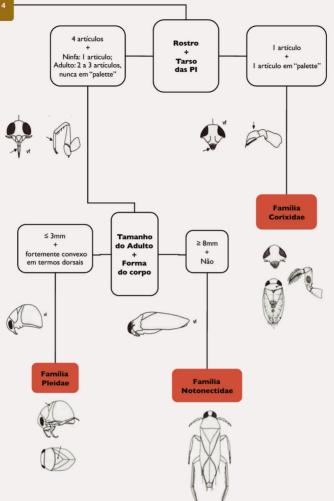


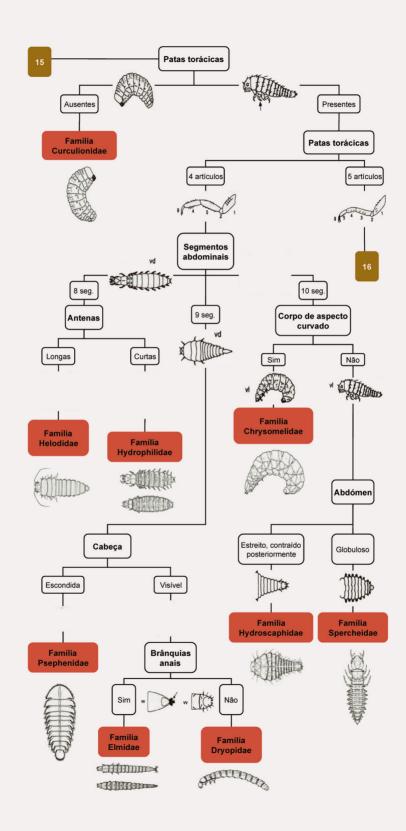


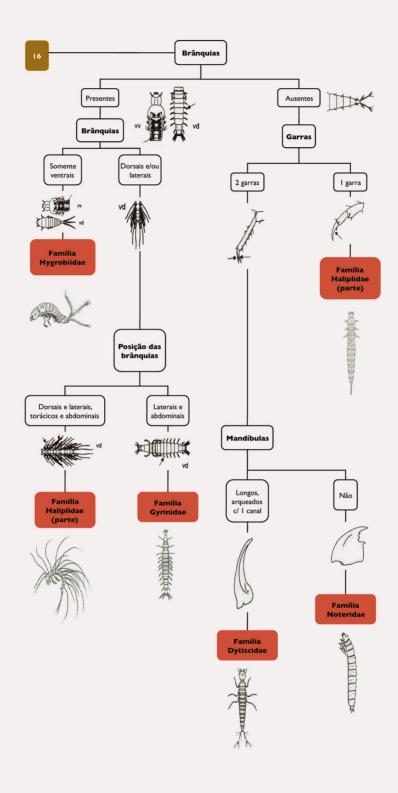


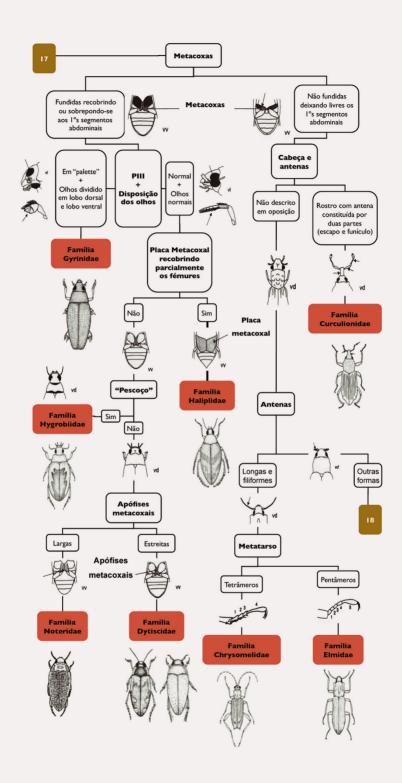


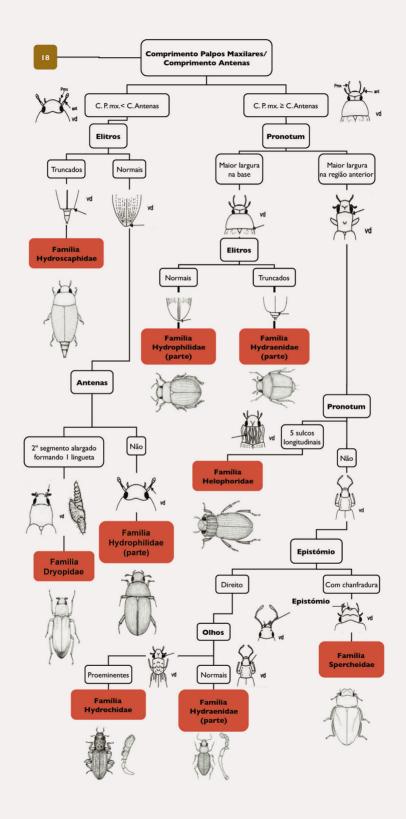











•

