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Ninety years have ellapsed since the Old Quantum Theory has emerged, and 

eighty three over the foundations of Modern Quantum Mechanics. Born in 

1901, Ruy Gustavo Couceiro da Costa soon became aware of the importance 

of Quantum Mechanics in Science, particularly in Chemistry. Such a vision 

has flurished ever since and its presence in the scientific realm is nowadays 

unquestionable: Physics, Chemistry, Biology, Astronomy, Engineering and even 

Philosophy, all such areas of knowledge reflect the importance of judgement 

in accordance with the quantum laws. This book is a result of a Symposium 

to honor the memory of Professsor Couceiro da Costa for his contribution to 

the development of Quantum Mechanics in Chemistry and Physics in Portugal.
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Av. Prof. Gama Pinto 2, 1649 - 003 Lisboa, Portugal

The fact that the founding papers of Density Functional Theory are among
the most cited papers ever, testifies for the importance of Quantum Mechan-
ics and its (often) counter intuitive features in characterizing many-particle
systems at a nano and sub-nano scale. Density Functional Theory has en-
abled one to use the computer to predict quantitatively several of the prop-
erties of the aforementioned many-particle systems. The prediction of new
materials, often exhibiting meta-stability, is one of its distinctive features.
In this lecture we will discuss a new class of meta-materials which, being
silicon based, exhibit properties which in no way resemble those of its main
constituent. In particular, we will discuss the structural and electronic prop-
erties of new materials of the form X@Si16 (with X=Ti, Zr and Hf) which are
predicted to be (meta) stable at room temperature and exhibit a remarkable
potential as possible high-Tc superconductors.

10.1 Introduction

A fundamental challenge for nanotechnology is to control fabrication with

atomic precision in order to assemble new materials with outstanding properties

or functions. Modern theoretical and computational methods are already able

to predict the properties of such materials. The importance of this has been

recognized with the 1998 Nobel Prize award to Walter Kohn for his develop-

ment of the Density Functional Theory [1, 2] (DFT) and to John Pople for his

development of computational methods in quantum theory. Today, theoretical

predictions are competitive with experimental techniques for controlling single

*Email address: jmpacheco@math.uminho.pt
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molecule chemistry given that the required hardware for performing computer

simulations is often orders of magnitude cheaper and may be more effective

than experiments. The quantitative predictions based on DFT rely on Quantum

Mechanics which itself is on the basis of the technological revolution of the XXth

century.

Much of what is considered now the information technology revolution has

been dependent of an ever increasing miniaturization of devices based on sil-

icon. The number of transistors that can be placed in an integrated circuit, which

is a measure of its computing power, has doubled every 20 months since 1971.

However, physical limits to miniaturization of devices based on bulk silicon

have already been met in the recent 45 nm generation of devices, where a high-

k dielectric material like HfO2 has replaced SiO2 as a gate insulator [3] for the

first time since the beginning of the integrated circuit. The potential “brick wall”

facing Moore’s Law [4] has motivated an incredible amount of experimental and

theoretical work in the search for alternative materials to bulk silicon. Silicon

clusters in particular have been under focus, given that nano-structured materi-

als are known to exhibit very different properties from their bulk counterparts.

But contrary to fullerene-like carbon clusters, pure silicon clusters have been

found to be chemically reactive, precluding the synthesis of cluster assembled

materials [5]. Along another route, early experiments by Beck [6, 7] indicated

the feasibility of using metal atoms to nucleate several silicon atoms into stable

X@Sin clusters, of which X@Si16 was found to be particularly stable. Recent ex-

perimental [5,8–15] and theoretical [16–24] work has confirmed these results for

a variety of mixed metal-silicon sandwich [8,25] and cage [16,17,23,24] clusters,

and a special class of clusters with stoichiometry X@Si16, with X a metal atom,

has been identified [16] as especially stable by means of ab-initio computer sim-

ulations. In particular, the stability of X@Si16 (X=Ti, Zr, Hf) nano particles has

been confirmed experimentally [13], via selective formation of neutral gas phase

clusters, using a dual laser vaporisation technique of pure metal and pure silicon

targets in an inert helium atmosphere. An additional experimental confirmation

of the synthesis of these nano-particles has been reported recently using a mag-
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netron co-sputtering tecnhique [15].

Using first-principles computer simulations within DFT we investigate the

main electronic properties of X@Si16 (X=Ti, Zr and Hf) clusters. The vibrational

modes and infrared spectra are also determined. We show the feasibility of using

the clusters as elementary building blocks to synthesize stable bulk materials,

and find that all the X@Si16 (X=Ti, Zr and Hf) cluster-assembled materials crys-

tallize in hexagonal closed packed structures (HCP). We further characterize the

main structural and electronic properties of these materials, while illustrating

their differences. We predict that these materials should be possible to stabilize

in a metastable phase at room temperature and normal pressure conditions. This

phase is predicted to be maintained under isotropic compression up to ∼ 1GPa.

Similar to Ti@Si16, both Zr@Si16 and Hf@Si16 are especially stable semiconduct-

ors with GGA (see below) band gaps of 1.6 eV, 0.3 eV larger than that previously

found for bulk Ti@Si16.

This paper is organized as follows: In section two details of the method and

simulations carried out are provided. Results and discussion are left to section

three, whereas the main conclusions and future prospects are postponed to

section four.

10.2 Methods

All ab-initio calculations were performed within the generalized gradient ap-

proximation (GGA [27]) to DFT using norm-conserving pseudopotentials [26,28]

and a plane-wave basis [29, 30]. An energy cut-off of 30.0 Hartree (816 eV) was

used throughout, leading to well converged forces within 0.02 eV/Bohr. This

value was also used as a stopping criteria for structural optimizations. Large

energy cutoffs are crucial to ensure reliable results (and good convergence of

the forces). We note that if less restrictive (and consequently, less computer

demanding) parameters are used in structural optimizations, the forces (gradi-

ents of the energy with respect to atomic positions) will be poorly determined.

As a consequence artificial structures and cage breakup can be obtained using

X@Si16 clusters as building blocks.
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10.2.1 Isolated Clusters

Structural optimization

The atomic coordinates of the isolated clusters were computed employing a

super-cell hexagonal lattice with parameters a = c = 27.0 Bohr to avoid mirror-

image interactions. To ensure proper structure determination we performed sev-

eral Quantum Langevin Molecular Dynamics [31] (QLMD) simulations at different

temperatures starting from arbitrary configurations of Si atoms always nucleated

around the central metal atom. Subsequently we performed geometry optimiza-

tions employing a conjugated gradient algorithm starting from the lowest energy

configurations obtained in the QLMD runs.

Electronic properties

We computed the total energy, the one-electron Kohn-Sham levels as well as

the total valence electronic density ρ(r) of each nano-structure at the equilib-

rium configuration. From the electronic density ρ(r) we constructed the radial

electronic density, ρ(r) = ρ(|r|) by calculating its average over the solid angle:

ρ(r) =
1
4π

∫
Ω

ρ(r)dΩ

The number of valence electrons is given by:

N =
∫

d3rρ(r) =
∫ ∞

0
dr4πr2ρ(r) ≡

∫ ∞

0
drη(r) (10.1)

The quantity η(r) defined in the last integral can be useful in quantifying the

electronic density inside the nanoparticle, providing a qualitative measure of its

chemical inertia.

We computed the cohesive energy per atom for each cluster subtracting from

the total energy Etot the atomic energies ESi
ps and EX

ps (X=Ti, Zr, Hf) of the pseudo-

potential calculation, Ecoh = (Etot − 16ESi
ps − EX

ps)/17.

Vibrational modes and infrared spectrum

The vibrational modes of frequency ω are described by a periodic displace-

ment in time of each nuclei I :

uI (t) = uI eiωt
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This leads to the following eigenvalue equation:

−ω2MIuI =
∑
J

∂2E (R)
∂RI∂RJ

uJ

which involves second order derivatives of the ground state energy E (R) with

respect to all N nuclei positions RI (I = 1, . . . ,N ). Solving these equations leads

to a set of frequencies ων (ν = 1, . . . , 3N ) and corresponding normal modes

uν = uν
τ ,αeα involving the collective displacements of the nuclei (τ = 1, . . . ,N )

along the Cartesian directions (α = x, y, z).

The absolute infrared intensity of the mode ν is given by [32]:

I IRν = K

∣∣∣∣∣∣
∑
τ ,α,β

Z*
τ ,α,βu

ν
τ ,β

∣∣∣∣∣∣
2

with τ = 1, . . . ,N and α, β = x, y, z. For intensities in (D/Å)2 amu−1 and Z in

atomic units K = 4.2056×104. The Born effective charge tensor Z∗ is the second

derivative of the energy with respect to both the electric field G and the nuclei

displacement Rτ :

Z*
τ ,α,β =

∂2E
∂Gα∂Rτ ,β

The second order derivatives of the ground state energy, with respect to atomic

displacements and/or homogeneous electric fields are computed using density

functional perturbation-theory (DFPT) [33, 34].

10.2.2 Bulk phase

Structural optimization

In a first step, we investigate bulk forms of cluster assembled materials, using

the equilibrium structures of the isolated cages. To this end, we computed the

cohesive energy per cluster varying the distance between clusters in a given bulk

structure, while freezing the cluster geometry and the angles between primitive

lattice vectors. The cohesive energy per cage in the bulk Eb
coh is defined:

Eb
coh = (Eb

tot − NcEI )/Nc

where Eb
tot is the total energy per untit cell, EI is the energy of the isolated

cluster and Nc is the number of clusters in the unit cell. Several bulk structures
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were investigated: Simple Cubic (SC), DIAmond-type (DIA), Body Centered Cu-

bic (BCC), Face Centered Cubic (FCC) and Hexagonal Close Packed (HCP). We

placed 1 cluster per unit cell in the SC, BCC and FCC structures, and 2 in DIA and

HCP. We have also tried to use supercells for the different lattices but the correc-

tions in energy were found to be negligible. We have carefully chosen the k-point

sampling in each calculation (particularly for small inter-cluster distances) in or-

der to ensure well converged results. We used the following Monkhorst-Pack

grids: 2× 2× 2 for DIA, 4× 4× 4 for SC, BCC and FCC and 3× 3× 2 for HCP.

Subsequently we performed a full geometry relaxation of both atomic co-

ordinates and lattice parameters taking as a starting point the configuration cor-

responding to the minimum of the cohesive energy per cluster as a function of

distance between clusters for the different bulk structures we found before.

Pressure curve and bulk modulus

Given the cohesive energy per cluster as a function of the distance d between

clusters, Ecoh(d), we can obtain the pressure as a function of inter-cage distance

P(d) by computing the numerical derivative from a cubic spline fit to the cohes-

ive energy points:

P(d) = − ∂E
∂V

= −∂E
∂d

(∂V
∂d

)−1

For a hexagonal lattice in the ideal packing structure (HCP), the volume of the

primitive cell is V =
√
2d3. Thus:

P(d) = − 1

3
√
2d2

∂E
∂d

= −254.845
d2

∂E
∂d

, (10.2)

which provides the pressure in GPa for lengths in Bohr and energies in eV.

The Bulk modulus B is determined by fitting the cohesive energy points to the

Birch-Murnaghan equation of state [35]:

E(V ) = E0 +
9V0B0

16

⎧⎨
⎩
[(

V0

V

)2/3

− 1

]3
B′
0 +

[(
V0

V

)2/3

− 1

]2 [
6− 4

(
V0

V

)2/3
]⎫⎬
⎭

(10.3)
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Figure 10.1. The Frank-Kasper [36] cage-structures, corresponding to the equilibrium
of the X@Si16 nano-particles. These highly symmetric structures, exhibiting several C3

symmetry axes, will be used as building blocks of molecular solids. Selected bond angles
are also represented. Angle values are given in Table 10.1.

Table 10.1. Selected bond angles depicted in Figure 10.1 for the X@Si16 clusters (X=Ti,
Zr, Hf). Similar values for the angles have been identified in amorphous Silicon [37].

X@Si16 a b c d e f g

Ti 54.6◦ 62.7◦ 60.0◦ 53.1◦ 63.4◦ 120.0◦ 106.4◦

Zr 54.0◦ 63.0◦ 60.0◦ 52.6◦ 63.7◦ 120.0◦ 108.4◦

Hf 54.0◦ 63.0◦ 60.0◦ 52.6◦ 63.7◦ 120.0◦ 108.4◦

10.3 Results and Discussion

10.3.1 Isolated Clusters

The structures of the isolated X@Si16 nano-particles obtained using the pro-

cedure outlined in the previous section are shown in Figure 10.1.

All these nano-particles exhibit Frank-Kasper [36] cage structures with C3v

symmetry. In Table 10.2 the parameters characterizing the structural properties

of these clusters are given. We choose three sets of distances: The distance from

the metal atom to the four silicon atoms on the tetrahedral sites r1; the distance

from the metal atom to the remaining twelve silicon atoms r2, and the minimum

nearest neighbour Si − Si distance rnnmin. The Zr@Si16 and Hf@Si16 have larger

dimensions than Ti@Si16: r1 and r2 are ∼ 3% and ∼ 1% larger than the ones

found for Ti@Si16.

Once the ground state geometries have been determined, we computed their
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Table 10.2. Structural parameters for the X@Si16 clusters with X=Ti, Zr, Hf. r1 is the
distance from the metal atom to the four silicon atoms on the tetrahedral sites, r2 is the
distance of the metal atom to the remaining twelve silicon atoms and rnnmin is the minimum
nearest neighbour Si-Si distance.

X@Si16 r1 (Bohr) r2 (Bohr) rnnmin

Ti 4.93 5.34 4.49
Zr 5.09 5.40 4.54
Hf 5.09 5.40 4.54

Table 10.3. Cohesive energy per cluster and HOMO-LUMO gaps for the X@Si16 clusters
with X = Ti, Zr, Hf.

X@Si16 Ecoh/Atom (eV) H − L Gap (eV)

Ti -4.96 2.3
Zr -4.99 2.4
Hf -4.97 2.5

main electronic properties. In Table 10.3 we list the calculated cohesive energy

per atom and HOMO-LUMO (Highest Occupied - Lowest Unoccupied Molecu-

lar Orbital) gap for these clusters. Whereas the cohesive energies are almost

identical for all cages the Zr@Si16 and Hf@Si16 gaps are ∼ 6% larger than the

one found for Ti@Si16.

In Figure 10.2 we show the radial electronic density of all the three clusters,

which is remarkably similar. Besides their large HOMO-LUMO gaps, another

indication of stability in these clusters is that almost all of the electronic density is

concentrated inside the cage clusters. The vertical bars represent the outer limits

of the cage-cluster, taking into account the cage radius and the silicon atomic

radius (cf. Table 10.2). Approximately 96% of the electronic charge density is

concentrated inside a sphere of radius 8 Bohr, suggesting a remarkable level of

chemical inertia.

In Figure 10.3 we display the one-electron energy levels. The three nano-

particles exhibit energy level distributions which are qualitatively similar. The

degeneracies of the energy levels can be qualitatively organized in the following
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Figure 10.2. Normalized radial electronic densities η(r) = 4πr2ρ(r) plotted as a function
of the distance to the central metal atom for isolated clusters Ti@Si16 (solid line), Zr@Si16
(dash-dotted line) and Hf@Si16 (dashed line). The radial electronic density ρ(r) is ob-
tained from the calculated ground state total electronic density ρ(r) taking its average
over the solid angle Ω. See Eq. (10.1). The total area subtended by each curve is 1.

Figure 10.3. Energy levels for the X@Si16 clusters with X=Ti, Zr, Hf. The electronic occu-
pancy of each level is 2. The plotted levels are grouped according to their approximated
degeneracies corresponding to levels in a spherical (jellium) shell structure with angular
momenta s, p, d, s, f , p, g, d.
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Figure 10.4. The calculated infrared spectrum of the X@Si16 (X=Ti, Zr and Hf) nano-
particles.

sequence:

2, 6, 10, 2, 14, 6, 18, 10.

This sequence is in excellent agreement with that resulting from a spherical-like

(jellium) super-atom:

s, p, d, s, f , p, g, d.

Hence, and on top of a structurally stable and highly symmetric cluster, the 68

valence electrons of each cage cluster also organize into into a spherical closed-

shell electronic system. Consequently these cages qualify as “double magic”.

In Figure 10.4 we show the results of the calculation of the infrared spec-

trum using the procedure described in the previous section. In all three cases

the normal modes have frequencies which are low compared to the fullerenes,

exhibiting sizable intensity ∼ 200 cm−1. This picture is consistent with a weaker

bonding of the silicon atoms in the X@Si16 (X=Ti, Zr and Hf) nanoparticles
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Figure 10.5. Selected normal modes for the Ti@Si16 (uppper panel) and Zr@Si16 (lower
panel) nanoparticles. In each panel the three top modes correspond to the peak of
highest IR activity whereas the lower three modes correspond to second most intense
peak.

compared to the carbon atoms in the fullerene clusters. The IR spectrum for

Ti@Si16 depicted in the upper panel of Figure 10.4 is nearly identical to the one

obtained by Nakajima and coworkers [14] using a localized basis set method.

One interesting feature apparent in Figure 10.4 is a progressive softening of the

frequency spectrum with the increasing mass of the central metal atom. This

is accompanied with a simultaneous decrease in IR activity which is most pro-

nounced for Hf@Si16. The peaks of highest intensity at 380 cm−1 and 360 cm−1

for Ti@Si16 and Zr@Si16 respectively correspond to the three normal modes de-

picted in the upper part of each panel of Figure 10.5. In the case of Ti@Si16

these are essentially displacements of the central metal atom in the cluster with

minor rearrangements of the surrounding silicon atoms. For the Zr@Si16 the
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Figure 10.6. Selected normal modes for the Hf@Si16 nanoparticles. The three top modes
correspond to the peak of highest IR activity whereas the lower six modes correspond
to second most intense peaks.

movement of the central metal atom is accompanied by a more sizable distor-

tion of the silicon cage. This is also the case for the three modes corresponding

to the second most intense peak for both Ti@Si16 and Zr@Si16 at 246 cm−1 and

205 cm−1 respectively.

In the case of Hf@Si16 the peak of highest IR activity is located at 180 cm−1.

These modes are depicted in the upper part of Figure 10.6 whereas the second

most intense peaks correspond to the six normal modes depicted in the lower

part of Figure 10.6.

10.3.2 Bulk phase

We investigate now the possible stability of bulk forms of the cluster as-

sembled materials. We restrict our analysis to the Frank-Kasper [36] cage struc-

tures even though we are aware that other isomers of M@Si16 have been repor-

ted in the literature [16, 21, 22]. However no structure of comparable stability
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Figure 10.7. Cohesive energy as a function of inter-cage distance for bulk structures of
X@Si16 clusters with X=Ti, Zr, Hf. For all crystal structures, nearest neighbor cages are all
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√
8/3, see main

text for details). The curves for the HCP, FCC, BCC and SC are drawn with solid lower,
solid upper, dashed and dotted lines, respectively. The only curve which exhibits no
bound state corresponds to the DIA structure, drawn with a dotted line.

has been identified to date with stoichiometry M@Si16. Hence we believe this

choice is justified. The existence of a C3v axis in the Frank-Kasper [36] struc-

ture may favour the HCP structure, since C3v is the point symmetry group of

the crystallographic P3m1 hexagonal group; nonetheless we investigated other

possibilities. In Figure 10.7 we plot the cohesive energy per cluster as a function

of cage-cage distance for the three cluster assembled materials in their different

bulk structures - SC, DIA, BCC, FCC and HCP. In all cases, the cohesive energy

curves for the SC, BCC, and FCC structures exhibit well defined minima around

17 Bohr. They are, however, less stable than the HCP structure. An entirely dif-

ferent behaviour is found for the DIAmond structure indicating that in all cases

this structure is unstable. In Figure 10.8 we show in detail the cohesive energy
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Figure 10.8. Cohesive energy as a function of inter-cage distance for the HCP molecular
solids Ti@Si16 (solid line), Zr@Si16 (dashed-dotted line) and Hf@Si16 (dashed line).

curves for the three cluster assembled materials in the HCP structure. The curve

for HCP-Ti@Si16 has a minimum for a cage-cage distance of 16.54 Bohr and a

value at the minimum of only −0.2 eV indicating that the cages bind weakly. The

significant reduction of the binding compared to fullerite [38] (cohesive energy

per cluster of −1.6 eV) is related to the role played by the central metal atom

which effectively pulls the valence charge density to within the cage, increasing

not only the cluster structural stability but also the HOMO-LUMO gap therefore

reducing its chemical reactivity. The curves for Zr@Si16 and Hf@Si16 have minima

at cage-cage distances of 17.2 Bohr and 17.1 Bohr respectively. The inter-cage

distance in these two structures is ∼ 4% larger than the one found for HCP

Ti@Si16. The values of −0.14 eV and −0.15 eV at the minimum also indicate that

the binding in these bulk materials is weaker than in the bulk Ti@Si16. These

results correlate with the fact that both Zr@Si16 and Hf@Si16 nanoparticles have

a cage radius ∼ 3% larger than Ti@Si16. Indeed, a larger cage radius induces an

increase of the inter-cage distance for the cluster assembled materials and also a

decrease of the binding between clusters given that the same electronic charge

is spread in a larger cluster volume.

270



Table 10.4. Lattice parameters for the X@Si16 HCP molecular solids with X=Ti, Zr, Hf. Δ
is the deviation of the ratio of lattice parameters c/a from the ideal packing value

√
8/3.

X@Si16 a (Bohr) c (Bohr) Δ (%)

Ti 16.54 27.13 0.5
Zr 17.11 27.94 0.01
Hf 16.93 28.14 1.8

Relaxation of both the internal cluster coordinates and the lattice parameters

starting at the minimum structures of Figure 10.8 leads to HCP structures char-

acterized by the lattice parameters summarized in Table 10.4. The atomic re-

arrangements within each cluster are negligible compared to the isolated cluster

geometry, the same applying to the overall changes in cohesive energies. The

orientation of the clusters in the Zr@Si16 and Hf@Si16 HCP structures is com-

patible with the p3m1 crystallographic group and identical to that of Ti@Si16 in

Ref. 26 where it has been explicitly illustrated.

Figure 10.8 also reveals that, despite the well developed minima in the co-

hesive energy per cluster, these minima are separated by barriers from other

equilibrium structures [26], which turn out to be more stable.

Similar to what was found for Ti@Si16 [26] these systems will relax to an

amorphous structure where silicon atoms of neighbouring cages bind cova-

lently when subject, e.g., to very high pressures. This covalent binding leads

to an absolute increase of the cohesive energy per cluster to −2.2 eV. However

from Figure 10.8 it is apparent that the values of the barrier maxima for both

Zr@Si16 and Hf@Si16 are larger than the 0.16 eV found for Ti@Si16. This translates

into an increase in the applied pressure necessary to drive the Zr, Hf@Si16 bulk

materials away from their metastable equilibrium HCP structure. Fully uncon-

strained geometry relaxations, varying both the cluster coordinates and unit cell

parameters, starting from a configuration significantly compressed with respect

to the equilibrium HCP configuration show no sign of amorphous transition at

normal temperature.

In Figure 10.9 we plot the pressure as a function of inter-cage distance for

the three X@Si16, X=Ti, Zr, Hf bulk materials using the data from the cohesive
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Figure 10.9. Computed pressure as a function of inter-cage distance for the HCP molecular
solids Ti@Si16 (solid line), Zr@Si16 (dash-dotted line) and Hf@Si16 (dashed line). The
curves were obtained by computing the numerical derivative of the cubic spline fit to the
cohesive energy points used to plot Figure 10.8. See Eq. (10.2).

Table 10.5. Bulk modulus for the X@Si16 HCP molecular solids with X=Ti, Zr, Hf.

X@Si16 Bulk Modulus (GPa)

Ti 1.25
Zr 0.90
Hf 0.97

energy curves and Eq. (10.2). We found that the maxima of the pressure curves

are 0.87GPa for bulk Zr@Si16 and 0.85GPa for bulk Hf@Si16, values ∼ 8% larger

than the 0.79GPa obtained for the bulk Ti@Si16 indicating that both bulk Zr@Si16

and Hf@Si16 are more stable than bulk Ti@Si16 against applied pressure. The

values for the bulk modulus B, obtained by fitting the Birch-Murnaghan equation

of state, Eq. (10.3), to the cohesive energy points are given in Table 10.5.

Quantum Langevin molecular dynamics (QLMD) simulations [31], starting

at the Ti@Si16 HCP equilibrium structure, suggest that the HCP phase is prob-

ably stable at room temperature, as shown in Figure 10.10. QLMD simulations

provide a very efficient test of the overall stability of the system, given the feasib-

ility of observing the occurrence of structural phase transitions, whenever they
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respect to the equilibrium value) of the average radius of each cage. The results show
the small amplitude of the oscillations taking place at room temperature, and suggest the
probable stability of this material. The time step used in each iteration is 2 × 10−15 sec,
and the simulation ran for a total of 2× 10−12 sec.

actually take place. QLMD combines some of the advantages of Metropolis

Monte Carlo (MC) and MD simulations. By exploiting the energy gradient the

atoms move collectively to the minima thereby efficiently sampling the config-

uration space. This is generally more efficient than a MC procedure where the

position of a single atom is updated at each step, followed by a recalculation

of the energy. The evaluation of the gradients of the energy, i.e., atomic forces

and stress are performed at almost no cost once the energy is determined.

The starting point of the simulation is the equilibrium HCP structure previ-

ously determined. Each atom was given an average initial kinetic energy corres-

ponding to a temperature of 300 K. Throughout the simulation the system was

in contact with a heat bath at a constant temperature of 300 K. In the top panel
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we depict the energy difference (per cage, in eV) between the actual configur-

ation at time t and the equilibrium configuration, where one can observe small

oscillations around an average energy value reflecting the fact that the crystal

is at finite temperature. In the lower panel we depict the time dependence of

the deviation from the equilibrium value of the average cage radius (in per-

centage). Both numbers illustrate the small amplitude nature of the oscillations

taking place [39].

Finally in Figure 10.11 we show the calculated band structures for the three

bulk structures determined above. All three molecular solids are semiconductors

with indirect band gaps of 1.3 eV (Ti@Si16) and 1.6 eV (Zr@Si16 and Hf@Si16).

10.4 Conclusions

Making use of first principles computer simulations in the framework of DFT,

we have investigated the main structural and electronic properties of the isova-

lent X@Si16 (X=Ti, Zr, Hf) nano-particles. We showed the feasibility of using

these remarkably stable clusters to synthesize molecular solids and we charac-

terized their main structural and electronic properties. Similar to bulk Ti@Si16,

we found that bulk Zr@Si16 and Hf@Si16 also crystallize in HCP structures with

∼ 4% larger inter-cage distance, compared to HCP-Ti@Si16. These bulk ma-

terials have a phase stability under isotropic compression up to ∼ 1GPa and

bulk modulus also ∼ 1GPa. Fully unconstrained QLMD simulations of the bulk

structures suggest their stability at room temperature and normal pressure. Our

calculations lead to band gaps of 1.6 eV for Zr@Si16 and Hf@Si16. Taking into

account that GGA systematically underestimates semi-conductor band gaps it is

likely that the true band gap is larger than 2 eV.

The results obtained here suggest an interesting hierarchical rationale for the

design of cluster assembled materials. Starting from the well known properties

of the atoms, one can design target nanoparticles with pre-defined properties

which, as such, are the constituent elements of new bulk materials. Furthermore,

as shown here, when the nano-cage nucleates around a central atom, one can

use at profit the size of the nucleating atom - via isovalent replacement - to
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Figure 10.11. Calculated band structures of bulk X@Si16 with X =Ti, Zr, Hf. These
molecular materials are predicted to be indirect gap semiconductors. Both Zr@Si16 and
Hf@Si16 have larger band gaps than Ti@Si16.
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manipulate the cage size and, consequently, the bulk lattice, with direct implic-

ations on the band gap. This provides an additional degree of freedom which

may prove very useful in, e.g., the quest for nano-designed, superconducting al-

loys. Taking fullerite as a model template, to the extent that doped bulk-X@Si16

is superconducting, changing the doping element and the nucleating nano-cage

atom may provide additional laboratory knobs to tune the superconducting gap.

The existence of low frequency intramolecular modes is another strong indic-

ator that appropriately doped bulk-X@Si16 can exhibit a remarkable potential as

possible high-Tc superconductors. Ongoing calculations of the electron-phonon

coupling to these nodes seem to support this. Additionally, the superconducting

transition temperature of hypothetical doped bulk materials based on the X@Si16

nanoparticles can be accurately predicted by means of computer simulations

within the framework of the Migdal-Eliashberg [40–42] theory of phonon medi-

ated superconductivity coupled to DFT. Work along these lines is in progress.

We further hope that our results stimulate experiments aiming at synthesizing

these materials in the lab [13, 15].
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