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Abstract 

Fuel treatments offer a means of proactively mitigating risks to firefighters and communities, and to 

restore altered ecosystems. The cost and potential impacts associated with implementing such treatments, 

however, suggest a need for thorough understanding of their effectiveness before they are carried out on the 

ground, particularly at landscape scales. At present, modelling tools used to evaluate fuel treatments are often 

limited in their ability to represent fuels or fuel/fire interactions. This is particularly true for treatments that 

seek to modify forest spatial patterns; most modelling frameworks are not spatially explicit and thus can only 

describe forests in terms of overall average characteristics. Here, we describe STANDFIRE, a prototype 3D 

platform for modeling wildland fuels and fire behavior at stand scales. Leveraging a powerful core modeling 

architecture, STANDFIRE links a forest growth model to physics-based fire behavior models, providing a 

means by which detailed fuels data can be used as input in physics-based fire behavior simulations which can 

explore fuel treatment effectiveness or sensitivity to environmental conditions. We describe the model, some 

applications, and plans for continuing development.  
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Fuel treatments such as thinning are used to alter fire behavior, mitigate risks to firefighters and 

communities and reduce fire severity. Many forest ecosystems have undergone significant changes in 

composition and structure over the last several decades (Hessburg et al 2005), often resulting in 

conditions that threaten their long term viability (Fulé et al 2014). Recent studies suggest that fuel 

treatments that create spatially heterogeneous fuel patterns can restore ecosystem resilience by creating 

diverse post-fire conditions (Larson and Churchill 2012). However, at present, forest modeling 

systems used to evaluate fuel treatments are not spatial, and employ very simple fire models that cannot 

accommodate fuel heterogeneity at an appropriate level of detail (Rothermel 1972). Given the scale at 

which ecosystem restoration and associated fuel treatments are needed, there is a substantial need for 

modeling that can be used to explore fuel treatment effectiveness in a spatially explicit manner.  In this 

paper, we discuss STANDFIRE, a 3D prototype modeling platform for fuels, fire behavior and effects, 

that may offer new capabilities in this arena. 
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STANDFIRE is a prototype system for spatially explicit, 3D modeling of fuels, fire behavior and 

effects. STANDFIRE’s modular architecture links four main components (Figure 1): 1) forest growth 

and biomass modeling with the Forest Vegetation Simulator (FVS, Crookston and Dixon 2005) 2) a 

core 3D fuel modeling architecture (see below) producing fuels inputs for 3) physics-based fire 

behavior models WFDS (Mell et al 2009) and FIRETEC (Linn et al. 2005) and 4) post-processors that 

calculate fire behavior and effects results from simulation outputs. More detail regarding these 

components can be found in a recent publication (Parsons et al 2018).  

 
Figure 1 - Flow chart of STANDFIRE components 

A particularly important component in STANDFIRE is STANDFUELS, a module of the CAPSIS 

platform (Dufour-Kowalski et al 2012) which provides critical capabilities for detailed but scalable 

fuel modeling. This module is based on the FireLib library –also used in FuelManager (Pimont et al 

2016)- and models vegetation either as Plants, such as large trees or shrubs, or as LayerSets, which 

are irregular (user specified) polygons (Figure 2A) associated with sets of attributes and which can 

contain other spatially explicit entities. For example, a LayerSet could contain multiple shrub species 

(as separate Layers) each of different sizes and properties. These basic, but powerful building blocks 

provide flexibility to model nearly any kind of wildland fuel. FireLib also carries out the non-trivial 

numerical task of converting fuel elements with specific geometries (like a tree crown) to voxels, in a 

file format which serves as inputs in the physics-based models. Additional detail regarding these 

capabilities is provided in Pimont et al (2016).    

 

 

STANDFIRE has many potential applications. The primary application that it was designed for is 

to facilitate more in-depth analysis of fuel treatment effectiveness. Unlike empirical or semi-empirical 

models which significantly abstract fuels, weather and fire, enabling rapid calculations but limiting the 

insights they can provide (Andrews et al., 2003, Cruz et al., 2005), physics-based fire models can 

model fire in situations closer to what occurs in the real world (i.e. complex topography, time and 

space varying ignition, and dynamic weather conditions). One of the key aspects that such models 
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bring to evaluation of fuel treatments is their capacity to model fire in discontinuous and heterogeneous 

fuels, which are often the result (indeed, the intent) of fuel treatments (e.g. thinning). A growing body 

of work has examined fuel heterogeneity in a number of situations including discrete fuel beds (Linn 

et al., 2005), and beetle killed trees (Linn et al., 2013, Hoffman et al., 2015). Recent applications in 

fuel treatments highlight the importance of spatial relationships in fuels (Linn et al., 2005, Parsons 

2006, Pimont et al., 2011, Contreras et al., 2012, Parsons et al., 2017, Ziegler et al., 2017). While much 

more work is needed, the successes of these efforts so far justify continued exploration of fuel 

treatments with systems such as STANDFIRE. 

STANDFIRE’s use of FVS for forest growth and biomass enables simulations for most forest types 

in the U.S.  Fuel treatment effectiveness assessments are carried out through fire simulations with 

physics-based fire models, and through subsequent calculations of fuel and fire behavior metrics. 

Figure 2B shows fire behavior at the same point in time for an untreated forest (Fig. 2B upper left) and 

three different crown space thinning treatments. Surface fire spread rates increased with increasing 

levels of thinning due to reduced canopy drag effects on the wind field.  

 

 

 
Figure 2 - Various aspects of STANDFIRE: A) example Plant and LayerSet fuel modeling approaches, B) example 

fire behavior comparison of different fuel treatments, C) example LiDAR mapped forest data D) example LiDAR 

mapped forest, as modeled fuels in STANDFIRE’s 3D viewer 

In addition to application in fuel treatment analysis, development is currently underway to expand 

STANDFIRE to facilitate simulation of prescribed fires. Current efforts are focused on expanding 

capabilities to read in real world fuels data such as from airborne LiDAR (Figure 2C, D). At present 

this import is carried out through a spatial shapefile derived from LiDAR point clouds rather directly 

through the point cloud itself. As LiDAR data become more available, and improved approaches for 

automated data processing are developed (Cabo et al., 2018), the capacity to rapidly develop very 

detailed 3D fuels inputs will be increasingly useful. Other ongoing development includes import of 

different raster datasets including topography, as well as spatial and temporal data associated with real 

world fires, such as ignition GPS tracks and wind data. These new features will expand STANDFIRE’s 

capabilities to rapidly develop input datasets for physics-based fire behavior models for simulations of 

prescribed fires, providing new capabilities for training and for examination of numerous factors that 

can affect prescribed fire outcomes, including fuel conditions, ignition patterns, and sensitivity to 
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weather conditions, among others. These developments will also facilitate efforts to evaluate fire 

models with real world fire data, a key objective of several large scale fire data collection efforts in 

recent years. 
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