Please use this identifier to cite or link to this item: https://hdl.handle.net/10316.2/44622
DC FieldValueLanguage
dc.contributor.authorHaley, James
dc.contributor.authorCaus, Angel Farguell
dc.contributor.authorKochanski, Adam K.
dc.contributor.authorSchranz, Sher
dc.contributor.authorMandel, Jan
dc.date.accessioned2018-11-09T22:43:52Z
dc.date.accessioned2020-09-05T02:04:26Z-
dc.date.available2018-11-09T22:43:52Z
dc.date.available2020-09-05T02:04:26Z-
dc.date.issued2018-
dc.identifier.isbn978-989-26-16-506 (PDF)
dc.identifier.urihttps://hdl.handle.net/10316.2/44622-
dc.description.abstractData likelihood of fire detection is the probability of the observed detection outcome given the state of the fire spread model. We derive fire detection likelihood of satellite data as a function of the fire arrival time on the model grid. The data likelihood is constructed by a combination of the burn model, the logistic regression of the active fires detections, and the Gaussian distribution of the geolocation error. The use of the data likelihood is then demonstrated by an estimation of the ignition point of a wildland fire by the maximization of the likelihood of MODIS and VIIRS data over multiple possible ignition points.eng
dc.language.isoeng-
dc.publisherImprensa da Universidade de Coimbrapor
dc.relation.ispartofhttp://hdl.handle.net/10316.2/44517por
dc.rightsopen access-
dc.subjectActive Fireseng
dc.subjectMODISeng
dc.subjectVIIRSeng
dc.subjectCoupled Fire-Atmosphere Modelingeng
dc.subjectRemote Sensingeng
dc.subjectMaximum Likelihoodeng
dc.subjectData Assimilationeng
dc.subjectData-Driven Simulationeng
dc.titleData likelihood of active fires satellite detection and applications toignition estimation and data assimilationpor
dc.typebookPartpor
uc.publication.firstPage959-
uc.publication.lastPage968-
uc.publication.locationCoimbrapor
dc.identifier.doi10.14195/978-989-26-16-506_105-
uc.publication.sectionChapter 5 - Decision Support Systems and Toolspor
uc.publication.digCollectionPBpor
uc.publication.orderno105-
uc.publication.areaCiências da Engenharia e Tecnologiaspor
uc.publication.bookTitleAdvances in forest fire research 2018-
uc.publication.manifesthttps://dl.uc.pt/json/iiif/10316.2/44622/200912/manifest?manifest=/json/iiif/10316.2/44622/200912/manifest-
uc.publication.thumbnailhttps://dl.uc.pt/retrieve/11016193-
uc.publication.parentItemId55072-
uc.itemId68185-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Advances in forest fire research 2018
Files in This Item:
File Description SizeFormat 
data_likelihood_of_active_fires.pdf1.3 MBAdobe PDFThumbnail
  
See online
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.