a Biblioteca Central da Universidade

INVOLUÇÕES

De

GRUPO CREMONIANO NO PLANO

POR

JOÃO PEREIRA DA SILVA DIAS

COIMBRA
IMPRENSA DA UNIVERSIDADE
1917

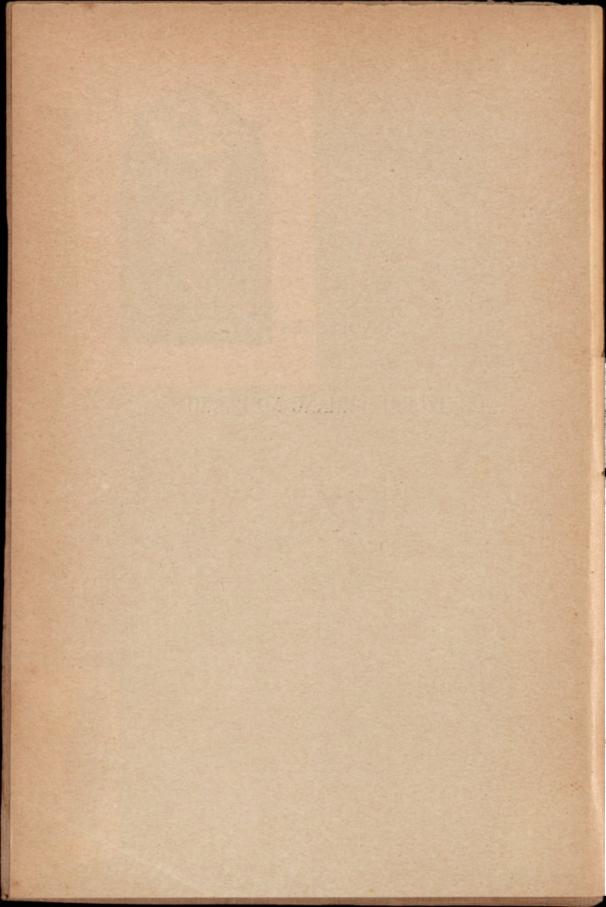
Leseruna Eineaser

Sala 5 Gab. — Est. 5 6 Tab. 2 0 N.º 2 2 Sala 5 Gab. — Est. 56 Tab. 20 N.º 22

INVOLUÇÕES

DO

GRUPO CREMONIANO NO PLANO



INVOLUÇÕES

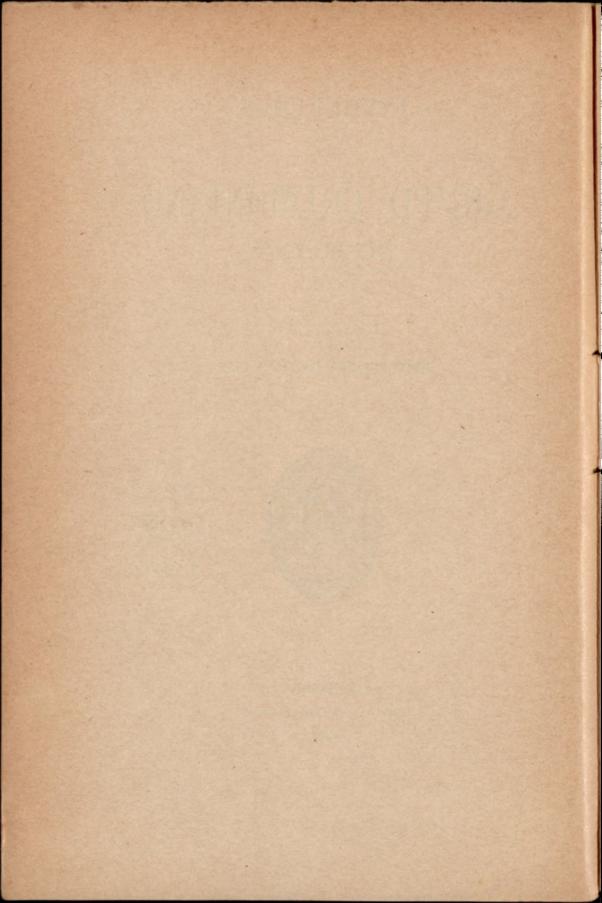
DC

GRUPO CREMONIANO NO PLANO

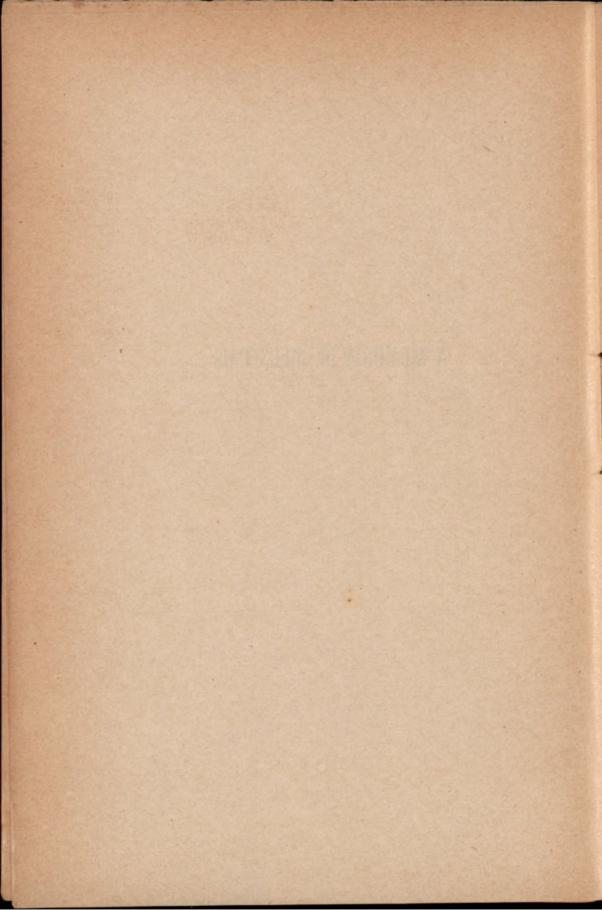
POR

JOÃO PEREIRA DA SILVA DIAS

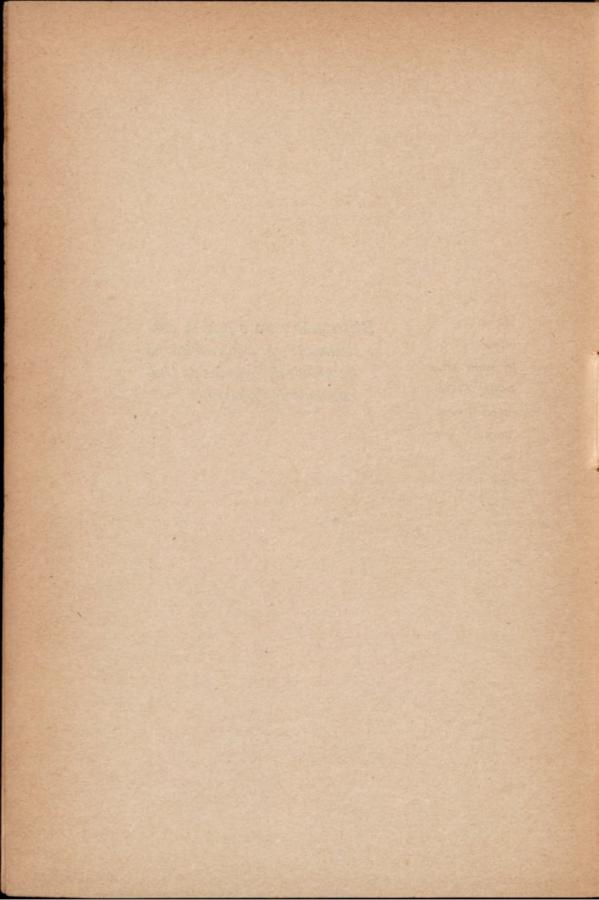
COIMBRA
IMPRENSA DA UNIVERSIDADE
1917



À MEMORIA DE MEUS PAIS



Dissertação para o acto de doutoramento em Matemática na Faculdade de Sciências da Universidade de Coimbra.



PREFÁCIO

As transformações projectivas foram as transformações bi-racionais do plano primeiro conhecidas. Poncelet no seu célebre «Traité des propriétés projectives» (1818) assinala já uma transformação bi-unívoca não projectiva. Em 1830, Plücker comunica as suas investigações sôbre a inversão em relação ao triângulo e, dois anos depois, Magnus descobre a transformação quadrática de que Seydewitz dá uma interessante construção sintética. Möbius (1853) dá a conhecer o método dos raios vectores recíprocos, não tardando Helmholtz, Kirchhoff e Maxwel a pôrem em evidência a sua importância em física matemática.

Publicado o trabalho de Magnus, julgou-se ter chegado à transformação bi-racional mais geral. Esta ideia, que dominou largos anos na Geometria, explica a indiferença com que a «Académie des Sciences» acolheu por duas vezes uma memória de Jonquières sôbre uma categoria de transformações, às quais se dá actualmente o seu nome.

Mas o verdadeiro fundador destas transformações deve considerar-se Luigi Cremona, que estabeleceu a sua teoria com absoluta generalidade num dos mais notáveis trabalhos da Geometria superior — «Sulle transformazioni geometriche delle figure piane» (1865).

Desde então, êste estudo interessou vivamente os geómetras.

As principais propriedades das transformações de caracter involutivo, de que se ocupa êste trabalho, devem-se a Bertini, Caporali e Dohlemann, mas encontram-se expostas em fragmentos, retocadas às vezes por notas posteriores. Nêste trabalho procuramos, tomando para ponto de partida esses elementos, organisar um corpo consistente de doutrina. Esta intenção revela-se no capítulo II, ao darmos como supérflua a ideia de transformação, o que nos presta uma simplificação grande na linguagem e nos raciocínios e uma completa autonomia para êste estudo, cujo traço de união com o das transformações é fácil de assinalar a cada momento. Evitamos assim uma extensa exposição de propriedades, de que não tirariamos proveito algum; apenas no § 1.º e 3.º indicamos as que reputamos absolutamente indispensáveis.

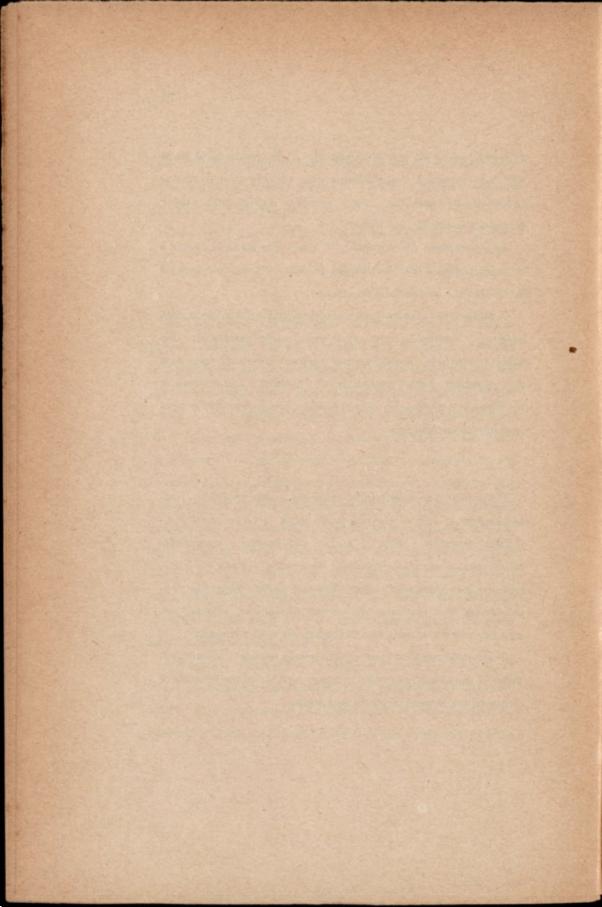
Merece-nos particular atenção o estudo das curvas e sistemas lineares invariantes, cujas propriedades nos trabalhos que conhecemos são apresentadas incidentalmente, quando é certo que quási toda a teoria destas involuções se pode basear no seu conhecimento. Englobando-as num capítulo especial, conseguimos não só chegar a algumas propriedades inéditas, como também expôr com maior singeleza a teoria dos tipos.

Apresentamos no capítulo IV uma das mais notáveis e úteis concepções das involuções planas — como imagens de homografias involutivas do espaço.

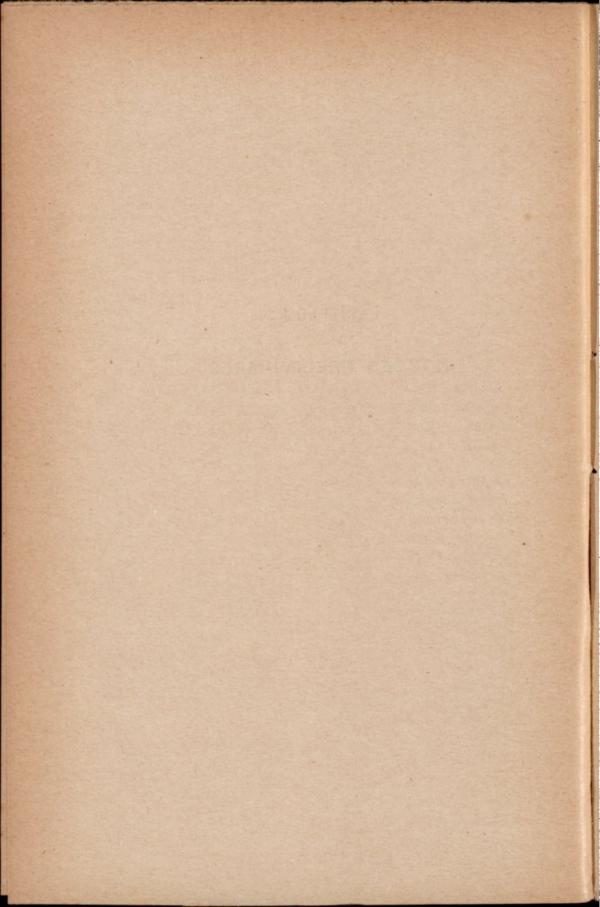
O método de Bertini para a investigação dos tipos está sujeito a restrições, que o próprio autor denuncia. No último capítulo, seguindo um método diferente, que nos foi sugerido pelos trabalhos de Clebsch, Lindemann e S. Kantor a propósito de problemas afins, cremos ter preenchido essas lacunas.

Para não dar demasiada extensão a êste trabalho, consideramos o leitor familiarisado com a Geometria Projectiva superior e com a teoria das curvas e superfícies algébricas. Julgamos, todavia, conveniente expôr no § 2.º, embora rápidamente e sem demonstrações, algumas propriedades dos sistêmas de curvas algébricas planas, por nos paracerem menos vulgarizadas na nossa lingua.

Resta-nos advertir que empregamos sistemáticamente o método sintético, por ser, a nosso ver, o mais cómodo e elegante um trabalho desta natureza.



CAPÍTULO I NOÇÕES PRELIMINARES



CAPÍTULO I

Noções preliminares

§ I.º - Definições

1. — Dizemos que um espaço linear se transforma noutro do mesmo número de dimensões, quando cada elemento P do primeiro se substitue por um ou mais elementos P' do outro. Por brevidade designamos esta operação por uma só letra: T, S, R,...

A transformação, pela qual aos elementos P' do segundo espaço se fazem corresponder os elementos P do primeiro, chama-se *inversa*. Convem designar por T⁻¹ a transformação inversa de T.

A transformação, pela qual a cada elemento corresponde o próprio elemento, chama-se *identidade* e convenciona-se representá-la por 1 na notação que vimos estabelecendo.

Quando aos elementos P correspondem os elementos P' por uma transformação T, e aos elementos P' os elementos P' dum novo espaço por uma transformação S, á transformação R, pela qual correspondem directamente aos elementos P os elementos P', chamamos produto dessas transformações e exprimimo-la pela igualdade simbólica

O produto de R por uma nova transformação Q pode escrever-se sob a forma (TS) Q ou, mais simplesmente, TSQ. Assim se pode estender esta operação a qualquer número de transformações: TSQV...

Resulta da definição que o produto de transformações é uma operação associativa, mas em geral não é comutativa, dizendo-se *permutáveis* duas transformações, que gozam desta última propriedade.

É evidente que o produto duma transformação pela sua inversa é a identidade; esta relação exprime-se simbólicamente por $TT^{-1} \equiv T^{-1}T \equiv 1$.

O produto duma transformação por si mesma diz-se o quadrado dessa transformação e representa-se por T²; análogamente se define o cubo, etc.

Uma transformação diferente da identidade, cujo quadrado é a identidade, diz-se *involutiva*: $T^2 \equiv 1$. Em geral uma transformação, diferente da identidade, que obedece à condição $T^n \equiv 1$, diz-se *periódica* de índice n.

Dizemos que várias transformações formam um grupo, quando entre elas existem a identidade, a inversa e as potências de cada uma e o produto de quaisquer delas.

Uma transformação diz-se bi-racional ou cremoniana (em homenagem a Cremona, seu fundador) quando a cada elemento dum dos espaços corresponde um e um só elemento do outro, com excepção dum número finito de elementos ou dos elementos dum número finito de espaços de menos dimensões contidos naqueles, aos quais correspondem infinitos elementos e não um só. Ésses elementos dizem-se fundamentais.

É evidente que a inversa duma transformação biracional é tambêm bi-racional; que a identidade é um caso de transformação bi-racional; e que o produto de duas ou mais transformações bi racionais e as potências duma delas são ainda transformações da mesma natureza. Logo as transformações bi-racionais ou cremonianas entre espaços de determinado número de dimensões formam um grupo, que se designa habitualmente por grupo cremoniano nesse espaço.

O fim dêste trabalho é precisamente o estudo das transformações de caracter involutivo do grupo cremoniano no plano. Esta teoria, tal como a estabelecemos, é extensível a qualquer forma fundamental de segunda espécie e em geral a qualquer espaço linear de duas dimensões; se insistimos no plano pontual, é por mera comodidade na exposição.

§ 2.º — Sistemas lineares de curvas algébricas planas

2. — Como fazemos no decurso dêste trabalho um emprêgo constante das propriedades dos sistemas lineares de curvas algébricas planas, julgamos conveniente recordar aquelas a que recorremos.

Dadas r+1 curvas algébricas planas da mesma ordem n pelas suas equações $f_1=0$, $f_2=0$,... $f_{r+1}=0$, linearmente independentes, à totalidade das curvas representadas por qualquer das equações

$$k_1 f_1 + k_2 f_2 + \ldots + k_{r+1} f_{r+1} = 0,$$

onde $k_1, k_2, \ldots k_{r+1}$ são r+1 parâmetros arbitrários, chama-se sistema linear de r dimensões, ou ∞^k (k vezes infinito), querendo assim significar que por r pontos genéricos do plano passa uma curva do sistema, ou, em geral, que r condições determinam uma curva do sistema. Isto mostra que um sistema linear ∞^r é comparável a um

espaço abstracto de r dimensões, cujos pontos são as suas curvas.

Um sistema duma dimensão chama-se um feixe; de duas, uma rede. Êstes sistemas, quanto à fixação das suas curvas, são comparáveis às formas fundamentais de primeira e de segunda espécie, respectivamente.

Quando designamos por C uma curva genérica (sem propriedades especiais) dum sistema, êste é representado habitualmente por | C |.

Chama-se *ordem* do sistema à ordem de qualquer das suas curvas.

É evidente que i+1 curvas linearmente independentes dum sistema linear ∞^r (i < r) determinam um sistema linear ∞^i ; êste sistema diz-se subordinado ou contido no proposto. Por r-i pontos do plano passam as curvas dum sistema ∞^i subordinado, a não ser que êsses pontos ocupem posições especiais.

Podem todas as curvas dum sistema ter pontos comuns; chamam-se *pontos bases* e podem ser múltiplos de diferentes ordens.

Um ponto base diz-se *ordinário*, quando duas ou mais curvas genéricas do sistema tem nele todas as tangentes distintas e variáveis.

Conforme a curva genérica do sistema $|C^n|$ é *irredutivel* ou *redutivel* assim o sistema toma um dêstes nomes. No segundo caso só se apresentam duas modalidades:

- a) o sistema compõe-se duma parte fixa de ordem μ , irredutível ou redutível, podendo mesmo uma curva dever ser contada várias vezes, e dum sistema de curvas irredutíveis de ordem $n-\mu$; cada curva do sistema $|C^n|$ obtem-se então juntando a uma curva $C^{n-\mu}$ dêste sistema irredutível a curva fixa C^{μ} ;
 - b) o sistema provêm dum feixe de curvas de ordem

 $\frac{n}{k}$, sendo cada curva de $|C^n|$ formada por um grupo de k curvas dêsse feixe.

Um sistema linear diz-se simples ou composto, conforme as curvas obrigadas a passar por um ponto genérico teem só êste ponto comum fora dos pontos bases, ou teem outros $\rho-1$ àlêm dêsse. Uma rede irredutível e simples diz-se homaloide.

Uma curva genérica dum sistema linear não pode ter pontos múltiplos fora dos pontos bases ou das curvas múltiplas (caso a) há pouco indicado. No caso duma rede, chama-se jacobiana ao logar dos pontos do plano, cujas rectas polares relativas às curvas do sistema são concorrentes; é tambêm o logar dos pontos cujas cónicas polares em relação às curvas da rede se decompõem em duas rectas e o logar dos pontos que podem ser duplos para curvas (especiais) da rede. Esta curva é de ordem 3n-3 e passa com s-1 ramos por cada ponto base da rede de ordem s.

Chama-se grau dum sistema linear ao numero N de intersecções de duas curvas genéricas do sistema, fora dos pontos bases. Num sistema simples é $N \ge r-1$; num sistema composto é $N \ge \rho (r-1)$.

Como podemos fixar a nossa atenção sôbre todos ou uma parte dos pontos bases dum sistema, introduzimos a noção de grupo base; queremos com esta locução significar o grupo formado por alguns ou todos os pontos bases do sistema. Um sistema linear diz-se completo ou incompleto relativamente a determinado grupo base, conforme é ou não formado por todas as curvas da sua ordem que passam pelos pontos dêsse grupo com as respectivas multiplicidades. É claro que um sistema incompleto é contido no sistema completo relativo ao mesmo grupo base; deficiência dum sistema incompleto é a dife-

rença δ, sempre positiva, da sua dimensão para a do sistema completo da mesma ordem que o contêm.

O mesmo grupo de pontos bases pode ser escolhido como grupo base de sistemas de curvas de várias ordens; há é claro um limite inferior para essas ordens, mas se existir um sistema de ordem n com êsse grupo base existirão tambêm sistemas de ordem superior com o mesmo grupo base.

Consideremos agora sistemas completos e sejam s_1 , $s_2 ldots s_i$, s_i , as ordens de multiplicidade dos ν pontos bases do grupo.

O número k_n de condições a que deve satisfazer uma curva de ordem n para conter os pontos daquele grupo pode aumentar com n; mas a partir de certo número l, o valor k_n é invariável com o aumento de n; êste valor k de k_n para $n \ge l$ chama-se a postulação do grupo base e é igual à soma $\sum_{i=1}^{\infty} \frac{s_i(s_i+1)}{2}$ dos números de condições que as singularidades dos pontos bases impõem isoladamente às curvas de ordem suficientemente elevada que passam por êles. Estão neste caso as curvas de ordem $n \ge \sum_{i=1}^{\infty} s_i$, mas há muitos grupos bases para os quais l é menor do que êste número.

Se fôr, $n \ge l$, o sistema linear completo, que contêm aquele grupo base, dir-se há regular e a sua dimensão será dada pela expressão

(1)
$$r = \frac{n(n+3)}{2} - \sum_{i=1}^{\nu} \frac{s_i(s_i+1)}{2}$$

chamada fórmula de postulação (Cayley-Nöther); se fôr n < l, o sistema dir-se há superabundante e a dimensão

será dada pela expressão

(2)
$$r = \frac{n(n+3)}{2} - k_n$$

conhecida por *fórmula característica* (Hilbert). Ainda neste caso convem conhecer o valor r' dado por (1), que toma o nome de dimensão *virtual* do sistema; ao valor r deduzido de (2) dá-se o nome de dimensão *efectiva*; à diferença sempre positiva

$$\sigma = r - r'$$

entre a dimensão efectiva e a virtual chama-se a superabundância do sistema. Em resumo, a dimensão dum sistema linear completo é dado em todos os casos pela fórmula

(3)
$$r = \frac{n(n+3)}{2} - \sum_{i=1}^{\nu} \frac{s_i(s_i+1)}{2} + \sigma,$$

onde o será nulo, quando o sistema fôr regular.

Para ter a dimensão dum sistema incompleto contido num dos anteriores, ter-se há de subtrair ao valor dado por (3) a deficiência.

Resta-nos apresentar algumas expressões relativas a sistemas lineares completos e irredutíveis, de que faremos uso frequente. Mantemos a notação até agora empregada, sem esquecer que o grupo base se refere a todos os pontos bases do sistema.

O género do sistema é o género da sua curva genérica; por definição, será dado pela expressão

(4)
$$p = \frac{(n-1)(n-2)}{2} - \sum_{i=1}^{n} \frac{(s_i-1)(s_i-2)}{2} \ge 0.$$

Combinando (3) e (4), vem

(5)
$$\begin{cases} \sum_{i}^{y} s_{i}^{2} = n^{2} - r - p + \sigma + 1 \\ \sum_{i}^{y} s_{i} = 3n - r + p + \sigma - 1. \end{cases}$$

O grau do sistema, há pouco definido, é dado claramente pela relação

(6)
$$N = n^2 - \sum_{i=1}^{\nu} s_i^2 = r + p - \sigma - 1 \ge 0.$$

Atendendo a esta expressão, as (5) podem escrever-se sob a forma seguinte:

(7)
$$\begin{cases} \sum_{i}^{\nu} s_{i}^{2} = n^{2} - N \\ \sum_{i}^{\nu} s_{i} = 3n + 2p - N - 2 \end{cases}$$

Por simples inspecção de (6) obteem-se algumas propriedades notáveis dos sistemas lineares completos. Assim, a superabundância é sempre menor do que o género, excepto nos feixes, para os quais é igual, e nos sistemas de curvas unicursais (p=0), que são sempre regulares.

Os sistemas completos de curvas elípticas (p=1) são regulares, excepto os feixes ($r=p=\sigma=1$).

Relativamente ao grau dos sistemas lineares completos há tambêm algumas propriedades de que nos serviremos:

Os sistemas lineares completos de curvas unicursais

teem o grau igual ao número de dimensões diminuído duma unidade (N=r-1).

Os sistemas lineares de curvas elípticas, excepto os feixes, teem o grau igual ao número de dimensões (N-r).

§ 3.º — Transformações cremonianas no plano

3.— A transformação bi-racional ou cremoniana mais simples é a homografia (ou colineação) plana, conhecida dos elementos de Geometria Projectiva. Segundo esta transformação, a cada ponto dum plano π corresponde um só ponto doutro plano π' , a uma recta, uma recta e em geral a cada forma fundamental de primeira espécie num dos planos corresponde no outro uma forma da mesma espécie, projectiva dela. Para estabelecer uma homografia entre dois planos π e π' , é suficiente fixar a correspondência entre quatro elementos de π e quatro elementos de π' . Assim, tomemos em π quatro rectas arbitrárias g_1, g_2, g_3, g_4 , três das quais não sejam concorrentes, e façamos corresponder-lhes respectivamente quatro rectas g'_1, g'_2, g'_3, g'_4 de π' , obedecendo ás mesmas condições.

É claro que à recta de π que une os pontos $(g_1 g_2)$ e $(g_3 g_4)$ corresponde a recta de π' que une os pontos $(g'_1 g'_2)$ e $(g'_3 g'_4)$ e análogamente para as rectas de uníão de $(g_2 g_3)$ e $(g_4 g_1)$, de $(g_3 g_1)$ e $(g_2 g_4)$. Dêste modo, por cada um dos seis pontos $(g_1 g_k)$ passam três rectas de π a que correspondem três rectas de π' que passam por $(g'_1 g'_k)$, o que é suficiente para fixar uma projectividade entre os feixes com centros nesses pontos, pela qual, dado um raio dum feixe $(g_1 g_k)$, fica bem determinado o raio correspondente do feixe $(g'_1 g'_1)$ e vice-versa.

Se r é uma recta de π , que não faz parte de nenhum

dos feixes $(g_i g_k)$ e designamos por r' a sua correspondente de π' , devem, segundo a definição, ter logar entre outras as relações

$$g_1(g_2g_3g_4r) \overline{\wedge} g'_1(g'_2g'_3g'_4r')$$

0

$$g_2(g_1g_3g_4r) \overline{\wedge} g_2(g_4g_3g_4r),$$

que determinam de maneira absolutamente unívoca os pontos $(g'_1 r')$ e $(g'_2 r')$, que, unidos, dão a recta r' de π' correspondente a r.

Se a recta r descreve um feixe com centro num ponto P de π , a recta r' descreve tambêm um feixe; com efeito, quando r descreve o feixe de centro P, os pontos $(g_1 r)$ e $(g_2 r)$, por exemplo, descrevem duas pontuais perspectivas

$$g_1(g_2r...) = g_2(g_1r...),$$

com o ponto unido $(g_1 g_2)$; entretanto a recta correspondente r' deverá ter interceptado as rectas g'_1 e g'_2 segundo pontuais projectivas

$$g_1'(g_2'r'...) \land g_2'(g_1'r'...)$$

que são tambêm perspectivas, visto terem o ponto unido $(g'_1 g'_2)$. Logo o raio r' descreve em π' um feixe com centro num ponto P'.

Daqui resulta que, unindo P com três dos pontos $(g_i g_k)$, os raios correspondentes de π' são concorrentes num ponto P'; e êstes três pares de raios correspondentes estabelecem uma correspondência projectiva entre os raios dos feixes com os centros em P e P'.

Assim reconhecemos que da correspondência estabelecida entre as quatro rectas arbitrárias de π e as quatro

rectas arbitrárias de π' , resulta não só uma correspondência entre as rectas dos dois planos mas tambêm uma correspondência entre os pontos dos mesmos planos, pela qual a cada ponto dum dos planos corresponde um e um só sôbre o outro, de modo que, ao descrever um ponto dum dos planos uma recta, o seu correspondente no outro plano descreve tambêm uma recta. Assim chegamos, por um processo muito simples, a estabelecer a homografia entre dois planos. Por uma simples substituição dos nomes dos elementos estabelece-se a mesma correspondência entre quaisquer formas fundamentais de segunda espécie.

4. — Consideremos em π uma rede de curvas unicursais C^m de ordem m (homaloide); para maior generalidade suponhamos que a rede tem α_1 pontos bases simples F_4 , α_2 pontos bases duplos F_2 , etc., α_k pontos bases de ordem k, F_k , etc. Fazendo r=2, N=1, $p=\sigma=0$, as relações (5) ou (7) tomam a forma

(8)
$$\sum_{k=0}^{\infty} \alpha_k k^2 = m^2 - 1$$

$$\sum_{k=0}^{\infty} \alpha_k k = 3m - 3.$$

Como a rede é comparável a uma forma fundamental de segunda espécie, é admissível uma correspondência homográfica entre as rectas do plano π' e as curvas da rede do plano π . Pelo que dissemos no número anterior, para a estabelecer é suficiente fazer corresponder a quatro rectas g_1' , g_2' , g_3' , g_4' de π' , três das quais não sejam concorrentes, quatro curvas C_1 , C_2 , C_3 , C_4 da rede, três das quais não façam parte dum mesmo feixe. A' recta que une (g_1',g_2') com (g_3',g_4') corresponde a curva da rede comum aos feixes determinados pelas curvas C_1 , C_2 e C_3 , C_4 que re-

presentamos abreviadamente por $(C_1 C_2)$ e $(C_3 C_4)$. O mesmo tem logar para os outros pares de rectas e curvas correspondentes; dêste modo por cada um dos pontos $(g'_i g'_k)$ passam três rectas a que correspondem três curvas do feixe $(C_i C_k)$; êstes três pares de elementos correspondentes dos dois feixes $(g'_i g'_k)$ e $(C_i C_k)$ determinam entre êles uma projectividade, pela qual a cada raio do primeiro corresponde uma curva do segundo e inversamente.

Procedendo do mesmo modo, ainda se mostra que a qualquer recta r' de π' , que não faça parte de nenhum dos feixes $(g'_i g'_k)$, tambêm corresponde uma curva, que não faz parte de nenhum dos feixes $(C_i C_k)$.

Quando a recta r' descreve um feixe com centro num ponto P', a curva correspondente descreve um feixe, cujas curvas teem um ponto comum àlêm dos pontos bases da rede. Unido P' com três dos pontos $(g'_i g'_k)$, as curvas correspondentes dos feixes $(C_i C_k)$ fazem parte dum mesmo feixe com um ponto base P àlêm dos pontos bases da rede e, inversamente, por um ponto P de π passam as curvas dum feixe, a que correspondem as rectas dum feixe com centro num ponto P'.

Assim se reconhece que da correspondência homográfica entre as rectas de π' e as curvas duma rede homaloide de π , resulta uma correspondência entre os dois planos, pela qual a cada ponto dum deles corresponde um, e só um, ponto do outro.

Quando um ponto P' de π' descrever uma recta r', o seu correspondente descreverá é claro, a curva da rede de π correspondente a r'; vamos mostrar que, inversamente, quando um ponto P de π descreve uma recta t, o seu correspondente tambêm descreve uma curva de ordem m.

Com efeito a recta t encontra em m pontos cada curva C^m correspondente a uma recta r' de π' ; ora a esses pontos devem corresponder outros tantos da curva de π', correspondente a t, sôbre cada recta r' logo esta curva é tambêm de ordem m. É fácil demonstrar que estas curvas de π' correspondentes às rectas de π formam também uma rede homaloide: duas rectas de π encontram-se num ponto P; a estas rectas correspondem em π' duas curvas de ordem m que se encontram em m2 pontos; mas ao ponto P deve corresponder apenas um ponto P', o qual não pode deixar de ser um dos pontos de intercepção das curvas referidas; logo dos m2 pontos de intersecção só um poderá variar, quando variarem as rectas de π . Por outro lado há uma correspondência bi-unívoca entre os pontos duma recta de π e os da curva correspondente, o que permite exprimir as coordenadas correntes dum ponto desta curva como funções racionais dum só parâmetro; logo estas curvas são unicursais. Finalmente por dois pontos arbitrários de π passa uma só recta t; logo pelos dois pontos correspondentes deve passar uma só curva, correspondente a essa recta. Em resumo, as curvas de ordem m de π' correspondentes às rectas de π formam uma rede análoga à das curvas de π correspondentes às rectas de π'; se designarmos por α', o número de pontos bases simples F'1, por a'1 o número de pontos bases duplos F'2, etc. e α'1 o número de pontos bases múltiplos de ordem k' e que designamos por F'k, teem logar as relações seguintes, análogas a (8)

(8')
$$\begin{cases} \sum \alpha'_k k'^2 = m^2 - 1 \\ \sum \alpha'_k k' = 3m - 3. \end{cases}$$

Assim se estabelece por via sintética uma transformação bi-racional de ordem m entre dois planos. 5. — Acabamos de reconhecer que os sistemas de curvas de ordem m de cada plano, correspondentes às rectas do outro, são análogos; por isso nos limitamos neste número a analisar um deles, atribuindo depois ao outro as mesmas propriedades que obtivermos para o primeiro. Supomos que os pontos bases são ordinários.

Cada curva da rede de π é determinada por dois pontos arbitrários do plano; se êstes coincidem num só, não poderá passar por êste com dois ramos uma curva irredutível da rede, porquanto uma curva genérica dêste sistema, sendo unicursal, já contêm o número máximo de singularidades que uma curva de ordem m pode conter sem degenerar. O logar dêsses pontos é $(n.^{\circ} 2)$ a jacobiana da rede, que tem a ordem 3m-3 e um ponto múltiplo de ordem k-1 num ponto base de ordem k. Uma curva C^m da rede que contiver um dêsses pontos será portanto composta de curvas de ordem inferior e deverá corresponder a uma recta especial do outro plano.

Seja então l uma recta de π , que passa por um ponto base F_k da rede dêste plano; esta recta encontra a curva de ordem m, C_r , correspondente a uma recta r' de π' , em m-k pontos àlêm de F_k . Quando a recta l descreve o feixe de centro F_k , variam só êstes m-k pontos de intersecção com C_r ; logo a curva correspondente a l terá uma parte de ordem m-k. A parte restante, que deve ser de ordem k, não depende da direcção de l e é encontrada em k pontos por r', que variam com esta recta ao mesmo tempo que as tangentes aos k ramos de C_r por F_k . (1)

⁽¹⁾ Se o ponto F_k não fôsse ordinário, algumas das tangentes ficariam fixas e a curva Φ_k seria redutível; por êste motivo introduzimos há pouco a restrição de os pontos bases serem todos ordinários.

Designamos essa curva por Φ'_k ; a todos os seus pontos corresponde o ponto F_k , andando todavia associada a cada um, uma direcção bem determinada por F_k . Isto mostra que Φ'_k é unicursal.

A curva correspondente a l é portanto uma curva especial, como as mencionadas há pouco: contêm um ponto duplo que resulta duma intersecção das duas partes que a compõem; ora quando l descreve o feixe de centro F_k , a curva Φ'_k fica invariável e apenas varia a curva de ordem m-k; logo o ponto duplo da curva considerada descreve Φ'_k , que fará portanto parte da jacobiana da rede do plano π' . O que se diz para as rectas que passam por F_k , diz-se para as que passam por qualquer outro ponto base da rede de π ; a totalidade das curvas, tais como Φ_k , que assim se obteem, forma portanto uma curva composta de ordem

 $\sum \alpha_k k = 3 m - 3$

que é precisamente a ordem da jacobiana.

Raciocínio análogo podíamos fazer para os pontos bases do outro plano. Vemos portanto que a cada ponto base de ordem k dum dos planos anda agregada uma curva de ordem k no outro, tal que a cada ponto desta corresponde êsse ponto base associado a uma direcção.

Os pontos F_1 , F_2 ,... F_k ,... de π e os pontos F'_1 , F'_2 ,... F'_k ,... de π' chamam-se pontos fundamentais; as rectas Φ'_1 , as cónicas Φ'_2 ,... as curvas Φ'_k ,... de π' e as rectas Φ_1 , as cónicas Φ_2 ,... as curvas Φ_k ,... de π dizem-se fundamentais.

Ordem dum ponto fundamental é a ordem da curva fundamental respectiva. Os pontos e as curvas fundamentais constituem o sistema fundamental.

As curvas fundamentais dum plano só podem interceptar-se em pontos fundamentais do mesmo plano. Com efeito, se A é um ponto de intersecção de duas curvas fundamentais, devem corresponder-lhe dois pontos fundamentais do outro plano; logo A é um ponto fundamental, visto ter mais dum ponto correspondente.

6. — Vejamos como se transforma uma curva C^n de ordem n existente no plano π ; supomo-la irredutível porque, se o não fôr, aplicamos a cada uma das suas partes a doutrina que vamos expôr. Admitamos, para maior generalidade, que a curva tem pontos múltiplos sôbre alguns ou todos os pontos fundamentais dêsse plano e que é γ_k a ordem de multiplicidade no ponto F_k . Como a curva C^n encontra uma curva C^m correspondente a qualquer recta r' de π' em $n m - \sum_k \gamma_k k$ pontos não fundamentais (onde Σ se refere a todos os pontos fundamentais por onde passa C^n), o logar dos pontos de π' correspondentes aos seus pontos é uma curva C^n de ordem

$$n'=n m-\sum_{k}\gamma_{k} k,$$

que se chama a correspondente ou transformada de C".

Por outra parte, designando por α_{kl} o número de vezes que a curva fundamental Φ_k passa pelo ponto fundamental F_l , a mesma curva C^n corta uma curva fundamental Φ_k em

$$\gamma'_k = n k - \sum_l \gamma_l \alpha_{kl}$$

pontos não fundamentais, onde Σ se refere a todos os pontos fundamentais por onde passam simultâneamente

 C^n e Φ_k ; logo a curva transformada $C^{n'}$ passa pelo ponto fundamental F'_k relativo a Φ_k com igual número de ramos, cujas tangentes são determinadas por aqueles pontos.

Em resumo uma curva C^n de π , passando γ^k vezes por um ponto fundamental F_k , transforma-se numa curva $C^{n'}$ $(n'=n\,m-\sum\limits_k \gamma_k\,k)$, que passa $\gamma'_k=n\,k-\sum\limits_l \gamma_l\,\alpha_{kl}$ vezes por cada ponto fundamental F'_k .

7. — Se a curva Cⁿ tem um ponto múltiplo de ordem s num ponto P não situado no sistema fundamental, o ponto correspondente P' de π' será um ponto múltiplo da mesma ordem para a curva correspondente C^{n'}. Com efeito, uma recta r que não passa por P transforma-se numa curva Cⁿ, que não passa por P'; quando a recta tende a passar por P genéricamente (isto é, sem ser tangente a nenhum dos ramos de Cⁿ) e portanto a ter α pontos de intersecção com Cⁿ reunidos em P, a curva Cⁿ, tende tambêm a passar por P' e a ter α intersecções com C^{n'} reunidas neste ponto; logo C^{n'} passa por P' com α ramos.

Em particular, um ponto múltiplo ordinário (com tangentes distintas) transforma-se um ponto múltiplo ordinário.

Repetindo o mesmo raciocínio, reconhece-se que a um ramo não linear com origem em P corresponde um ramo da mesma ordem com origem em P' sôbre a curva transformada; e tambêm se duas curvas C_4 e C_2 teem absorvidas i intersecções num ponto P, as curvas transformadas C_4 e C_2 terão absorvidas outras tantas intersecções no ponto P'.

Podemos resumir estas propriedades, dizendo que curvas correspondentes se comportam análogamente em pontos correspondentes não situados no sistema fundamental.

8. — Entre os pontos duma curva C^n de π e os da transformada $C^{n'}$ em π há, pois uma correspondência bi-unívoca; estas curvas teem portanto o mesmo género, em virtude do importante

Teorema de Riemann: Duas curvas irredutíveis, cujos pontos estão entre si numa correspondência bi-unívoca, teem o mesmo género.

Há numerosas demonstrações dêste teorema (¹); indicamos a de Schubert por nos parecer a mais coerente com a índole dêste trabalho.

Por definição, o género p duma curva Cⁿ com v pontos bases de ordem s₁, s₂,...s_v é dado pela expressão

$$p = \frac{(n-1)(n-2)}{2} - \sum_{i=1}^{\nu} \frac{s_i(s_i-1)}{2};$$

a classe da mesma curva é dada por umas das conhecidas fórmulas de Plücker

$$n_1 = n(n-1) - \sum_{i=1}^{\nu} \frac{s_i(s_i-1)}{2};$$

destas expressões vem

$$2 \mu = n_1 - 2 n + 2.$$

Posto isto, seja C uma curva irredutível de ordem n, género p e classe n_1 ; C' uma curva de ordem n', género p' e classe n'_1 , cujos pontos estão em correspondência

⁽¹⁾ Ver por exemplo A. Clebsch: Leçons sur la Géométrie (tradução francesa) tomo III, pág. 27 e seg.

bi-unívoca com os de C; suponhamos que levamos os seus planos a coincidir, o que não tira generalidade á demonstração. Tomemos dois pontos arbitrários P e Q do plano e façamos corresponder a cada raio r do feixe de centro P todo o raio do mesmo feixe, tal que êste e r encontrem C em dois pontos, cujos correspondentes sôbre C' sejam alinhados com Q. Ora o raio r encontra C em n pontos. cujos correspondentes, unidos com Q, dão outras tantas rectas, que encontram ainda a curva C' em mais n(n'-1)pontos, a que correspondem sôbre C outros tantos pontos que dão por união com P todos os raios correspondentes a r; logo a correspondência, que, segundo aquela lei, se estabelece entre os raios do feixe P é simétrica n(n'-1)a n(n'-1). Pelo princípio fundamental de Chasles (1), há nesta correspondência 2n(n'-1) elementos duplos, que só podem ser os n', raios dirigidos de P para os pontos de C correspondentes aos pontos de contacto das tangentes, que podemos conduzir por Q a C; e os raios do feixe P que encontram C em n pontos, dois dos quais teem os correspondentes sôbre C' alinhados com Q. Designando o número dêstes últimos por θ, temos portanto

$$2n(n'-1) = n'_1 + \theta.$$

Se considerarmos agora a correspondência que se obtêm no mesmo feixe, trocando as duas curvas no raciocínio anterior, ter-se há

$$2n'(n-1) = n_1 + \theta$$
.

⁽¹⁾ Veja Hatton: The principles of projective geometry, pág. 320.

Destas igualdades deduz-se

$$n_1 - 2n = n'_1 - 2n';$$

comparando esta igualdade com a relação há pouco achada entre o género e a classe duma curva, vem finalmente

$$p = p'$$
.

9. — Consideremos agora no plano π um sistema linear $|C^n|$ de ordem n, r dimensões, género p e grau N.

Cada curva dêste sistema transforma-se numa curva do outro plano, cuja ordem é dada pelo n.º 6 e que tem o mesmo género. Como por r pontos genéricos de π passa uma só curva C de $|C^n|$, tambêm pelos r pontos correspondentes de π' passa uma só curva, transformada de C, por isso que há uma correspondência bi-unívoca entre os pontos de cada curva de $|C^n|$ e os da sua transformada; logo as curvas dêsse sistema linear transformam-se nas curvas dum sistema linear $|C^{n'}|$ de π' com o mesmo número de dimensões, que se diz correspondente ou transformado do primeiro. Finalmente, como duas curvas genéricas de $|C^n|$ se encontram em N pontos variáveis, outro tanto se dará com duas curvas genéricas de $|C^n|$; logo os dois sistemas teem o mesmo grau.

Em resumo:

TEOREMA: Numa transformação Cremoniana, um sistema linear $|C^n|$ transforma-se num sistema linear $|C^{n'}|$ do mesmo número de dimensões, género e grau.

Se o sistema é completo, a fórmula (6) mostra que o sistema transformado tem tambêm a mesma superabundância.

10. — Em qualquer transformação cremoniana, os sistemas fundamentais dos dois planos devem obedecer às equações de condição

$$\begin{cases} \sum_{k} \alpha_{k} k^{2} = m^{2} - 1 \\ \sum_{k} \alpha_{k} k = 3 m - 3 \end{cases}$$

em m, e

$$\begin{cases} \sum_{k'} \alpha_{k'} \, k'^2 = m^2 - 1 \\ \sum_{k'} \alpha_{k'} \, k'^2 = 3 \, m - 3 \end{cases}$$

em π' .

As soluções devem ser compatíveis com a natureza geométrica do problema, isto é, devem ser inteiras e positivas; não podem conter um ponto fundamental de ordem superior a m-1, aliás a rede fundamental das curvas correspondentes às rectas do outro plano seria redutível; a soma das ordens de dois pontos fundamentais não pode ser superior a m, e a de cinco pontos não pode ser superior a 2m; etc.

O problema com toda a generalidade está ainda sem uma solução completa apesar das tentativas de Ruffini; não se tem conseguido mais do que achar soluções especiais. Cremona calculou as soluções até m=10, mas nas aplicações muito restritas que fazemos destas transformações, basta-nos conhecer os casos que vamos indicar.

Depois da homografia plana (m=1), a transformação cremoniana mais simples é a transformação quadrática (m=2), já conhecida no segundo quartel do século passado; as equações de condição mostram que neste caso o sistema fundamental é constituido por três pontos, cujas rectas de união formam as linhas fundamentais; assim se

designarmos por A, B e C os pontos fundamentais do plano π e por A', B' e C' os de π ',

ao	ponto	A	corresponde	a	recta	B'C'
>	29	В		30	>	A'C'
>>	2	C	2	2	3	A'B'
3		A'	,	>	>	BC
3	>	\mathbf{B}'	*	20	3	AC
3	20	C	,	2	>	AB.

Outra solução importante, mas esta para qualquer valor de m, é a seguinte:

em
$$\pi$$

$$\begin{cases} \alpha_{m-1} = 1 \\ \alpha_1 = 2m - 2 \end{cases}$$

$$\begin{cases} \alpha'_{m-1} = 1 \\ \alpha'_1 = 2m - 2 \end{cases}$$

A transformação com êstes sistemas fundamentais diz-se de *Jonquières*.

11. — Uma das noções mais úteis no estudo que vamos fazer resulta sem dificuldade da aplicação das transformações cremonianas; consiste em que é sempre possível reduzir, mediante uma transformação cremoniana, uma curva algébrica plana a outra com todos os pontos múltiplos ordinários (isto é, com todas as tangentes distintas).

Seja C^n uma curva irredutível ou redutível dotada de diversos pontos múltiplos de ordem s_i , alguns dos quais com tangentes coîncidentes; seja A um dêstes e ρ a respectiva ordem de multiplicidade. Estabeleçamos uma transformação quadrática entre o plano π desta curva e

qualquer outro plano \u03c4', colocando um ponto fundamental em A e os outros dois B e C de modo que as rectas fundamentais AB, AC e BC encontrem C" em pontos todos distintos e que nenhuma delas faça parte de C"; tomem-se arbitráriamente os pontos fundamentais A', B', C' de π'. A curva Cⁿ transforma-se noutra de ordem $n' = 2n - \rho$, formada de igual número de partes se fôsse redutível, tendo em A' um ponto múltiplo de ordem n e em B' e C' pontos múltiplos de ordem $n-\rho$ todos êles com tangentes distintas, isto é, ordinários; os pontos múltiplos não situados nos pontos fundamentais transformam-se em pontos da mesma natureza. Sôbre as rectas fundamentais A'B' e A'C' não há pontos de Cⁿ àlêm de A', B' e C', mas sôbre B'C' há ρ pontos distintos ou coincidentes conforme as ρ tangentes a Cⁿ em A são ou não distintas. Assim, se designarmos por \(\tau_1, \tau_2 \dots \) os números de tangentes de C" em A que existem em rectas distintas, são êsses tambêm os números de pontos de Cn', que existem em pontos disdintos de B'C', e é evidente que será $\tau_k \ge 1$ e $\Sigma \tau_k = \rho$.

Por outra parte, se indicarmos com ρ_1 , ρ_2 ,... as ordens de multiplicidade dêsses pontos de $C^{n'}$ sôbre B'C' e distintos, conforme B'C' fôr ou não tangente a $C^{n'}$ num deles, assim será para êste ponto $\rho_k \leq \tau_k$; logo é $\sum \rho_k \leq \rho$.

Em resumo, a curva C^n transforma-se numa curva $C^{n'}$ com as mesmas singularidades, à excepção de ponto A de ordem ρ , que é substituido por três pontos múltiplos ordinários e por pontos múltiplos de ordem ρ_1 , ρ_2 , ..., tais que é $\Sigma \rho_k < \rho$.

Procedendo com a curva $C^{n'}$ relativamente a um dos pontos de ordem ρ_k , por exemplo ρ_1 , como se procedeu com C^n em relação ao ponto A de ordem ρ , obter-se há uma curva $C^{n''}$ de ordem $n'' = 2n' - \rho_1$ possuindo pontos múltiplos como os de $C^{n'}$, excepto o ponto ρ_1 que é substi-

tuido por pontos ordinários e por pontos de ordem $\rho_{l,l}$, $\rho_{l,2}$, ..., tais que é $\sum \rho_{l,l} \leq \rho_{l}$; procedendo em seguida da mesma forma para os pontos de ordem ρ_{2} , ... chegar-se há a uma curva com pontos múltiplos como os de \mathbb{C}^{n} , á excepção do de ordem ρ que é substituido por pontos ordinários e certo número de pontos múltiplos de ordem ρ_{kl} $(k=1,\ 2,\ \ldots;\ l=1,\ 2,\ \ldots)$, tais que é $\sum \rho_{kl} \leq \sum \rho_{k} \leq \rho$.

Em seguida procedemos para os pontos de ordem ρ_{kl} como se procedeu para os de ordem ρ_k ; e assim sucessivamente.

Se as ordens de multiplicidade ρ_k forem menores do que ρ , as ordens ρ_{kl} menores que ρ_k , etc., chegar-se há evidentemente a uma curva em que o ponto de ordem ρ vem substituido só por pontos múltiplos ordinários.

Há todavia a incerteza de chegar a êste resultado no caso de ser $\rho = \rho_1 = \rho_{14} = \ldots$ Ora é facil mostrar que esta sucessão não poderá ter logar senão para um número limitado de transformações, a partir do qual o ponto de ordem ρ é substituido por um ou mais pontos de ordem diferente e por conseguinte de ordem inferior.

Seja p o número

$$\frac{(n-1)(n-2)}{2} - \sum_{i} \frac{s_{i}(s_{i}-1)}{2}$$

que dá o género de C^n quando tem todos os pontos múltiplos ordinários; se a curva é composta de μ partes, resulta imediatamente da substituição de n pela soma das ordens das suas partes e s_i pela soma das multiplicidades das suas partes nesse ponto a seguinte relação

$$p + \mu - 1 \ge 0$$
.

Introduzamos no caso que estamos tratando o valor p dado pela mesma relação; pondo em evidência o ponto de ordem ρ, temos para Cⁿ

$$p = \frac{(n-1)(n-2)}{2} - \frac{\rho(\rho-1)}{2} - \sum_{i} \frac{s_i(s_i-1)}{2};$$

para Cn/

$$p' = \frac{(2n - \rho - 1)(2n - \rho - 2)}{2} - \frac{n(n - 1)}{2} - \frac{2(n - \rho)(n - \rho - 1)}{2} - \sum_{k} \frac{\rho_{k}(\rho_{k} - 1)}{2} - \sum_{i} \frac{s_{i}(s_{i} - 1)}{2}$$
$$= p - \sum_{k} \frac{\rho_{k}(\rho_{k} - 1)}{2};$$

para C"

$$p'' = p' - \sum_{kl} \frac{\rho_{kl} \left(\rho_{kl} - 1\right)}{2}$$

$$= p - \sum_{k} \frac{\rho_{kl} \left(\rho_{k} - 1\right)}{2} - \sum_{kl} \frac{\rho_{kl} \left(\rho_{kl} - 1\right)}{2}$$

etc.....

$$p^{(r)} = p - \sum_{k} \frac{\rho_{k}(\rho_{k} - 1)}{2} - \sum_{kl} \frac{\rho_{kl}(\rho_{kl} - 1)}{2} - \dots$$

Se obtivermos $\rho = \rho_1 = \rho_{14} = \ldots$, ao fim de r transformações será

$$p^{(r)} = p - r \frac{\rho(\rho - 1)}{2};$$

como a curva que se obtêm ao fim destas r transformações é ainda composta de µ partes, temos

$$p^{(r)} + \mu - 1 > 0$$
.

As duas últimas relações dão

$$r \leq \frac{2(p+\mu-1)}{\rho(\rho-1)}$$

isto é, aquele caso só pode ter logar para um número limitado de transformações, como se queria mostrar.

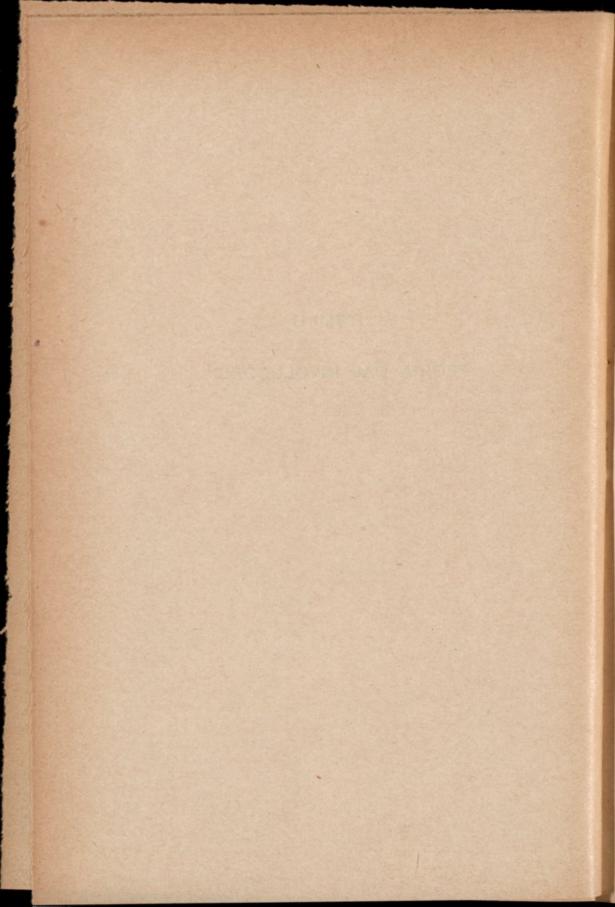
Efectuando a mesma operação para os restantes pontos múltiplos de Cⁿ e notando que um produto de transformações quadráticas é uma transformação cremoniana, reconhece-se a veracidade da proposição enunciada no princípio dêste número.

12. — Se aplicarmos o processo anterior a duas curvas algébricas dum sistema linear de modo a transformá-las noutras com todos os pontos múltiplos ordinários, a mesma transformação substituirá o sistema linear de que elas fazem parte por outro do mesmo número de dimensões, grau e género, com todos os pontos bases nos pontos múltiplos dessas curvas; as outras curvas do sistema terão tambêm tangentes distintas e variáveis em todos os pontos bases. Logo é sempre possivel substituir, mediante uma transformação cremoniana, um sistema linear de curvas algébricas planas por outro com todos os pontos bases ordinários.

Geométricamente, podemos figurar a singularidade dum ponto múltiplo (ou base) de ordem ρ não ordinário, dizendo que os pontos de ordem ρ_k são infinitamente próximos do

ponto de ordem ρ nas direcções em que se confundem algumas tangentes neste ponto; que os pontos de ordem ρ_{kl} são infinitamente próximos dos de ordem ρ_k ; etc. Êste notável conceito de ponto base dum sistema, permite-nos usar indistintamente as locuções — pontos bases ordinários — pontos bases distintos.

CAPÍTULO II TEORIA DAS INVOLUÇÕES



CAPÍTULO II

Teoria das involuções

§ 4.º — Generalidades. Sistema fundamental

13. — Se os dois planos π e π' coincidem e a transformação cremoniana entre êles estabelecida é involutiva, a cada ponto P, considerado pertencente ao planó π , corresponde um ponto P' de π' , ao qual, considerado pertencente a π , corresponde um ponto de π' que coincide com P; ora, se retomarmos o cálculo simbólico introduzido no n.º 1, podemos escrever

 $I^2 \equiv 1 \equiv II^{-1}$,

donde

I=I-1,

isto é, a cada ponto P do plano, quer se considere pertencente a π , quer a π' , corresponde sempre o mesmo ponto P'. Podemos portanto pôr de parte, por supérflua, a idea de dois planos sobrepostos e interpretar qualquer involução do grupo cremoniano no plano como uma particular distribuição dos pontos dum plano por pares mútuamente conjugados, de modo que:

1.º cada ponto pertence a um e só um dêsses pares (com excepção dum número finito de pontos, chamados fundamentais, que pertencem a infinitos pares); 2.º quando um ponto descreve uma recta genérica do plano, o seu conjugado descreve uma curva de ordem m. Dizemos que m é a ordem da involução.

14. — Qualquer curva Cm de ordem m, logar dos conjugados dos pontos duma recta genérica do plano, é unicursal, visto haver uma correspondência bi-unívoca entre os seus pontos e os dessa recta. Por dois pontos do plano passa uma só curva Cm, relativa à recta de união dos conjugados dêsses pontos. Duas rectas do plano encontram-se num ponto P, que deve ter por conjugado um dos pontos de intersecção das curvas de ordem m relativas a essas rectas; êste será o único ponto de intersecção das duas curvas que pode variar com P. Logo as curvas unicursais de ordem m, logares dos conjugados dos pontos situados sôbre as rectas do plano, formam uma rede de grau igual à unidade (homaloide). Designando por a o número de pontos bases simples Fi, por az o de pontos bases duplos F_z , ... por α_k o de pontos bases F_k de ordem k, e fazendo r=2, p=0, N=1 e portanto $\sigma=0$, as expressões (5) ou (7) tomam a forma

(9)
$$\sum_{k} \alpha_k k^2 = m^2 - 1$$

$$\sum_{k} \alpha_k k = 3 m - 3.$$

15. — Vimos que uma curva desta rede é determinada por dois pontos do plano; se estes dois pontos coincidem num só, não poderá passar por êle com dois ramos uma curva irredutível da rede, por isso que uma curva genérica já contêm o número máximo de singularidades que uma curva da sua ordem pode conter sem degenerar. Por conseguinte, se uma curva da rede contiver um ponto duplo fora dos pontos bases, será composta de

curvas de ordem inferior e deverá corresponder a uma recta especial; o logar dêsses pontos é a jacobiana da rede (n.º 2).

Posto isto, seja r uma recta que passa por um dos pontos bases da rede, por exemplo F_k ; esta recta encontra a curva C_g^m de ordem m, relativa a uma recta genérica g do plano, em m-k pontos àlêm de F_k . Estes pontos teem por conjugados pontos comuns a g e à curva relativa a r, que são os únicos que variam, quando r descreve o feixe de centro F_k ; logo a curva relativa a r terá uma parte de ordem m-k. A parte restante, que deve ser de ordem k, é independente da direcção de r e é encontrada por g em k pontos, que variam com esta recta ao mesmo tempo que as tangentes aos k ramos de C_g^m por F_k . (1)

Em resumo, a qualquer recta que passa por F_k corresponde uma curva de ordem m-k variável com a direcção dessa recta e cujos pontos são conjugados dos pontos dessa recta, e uma curva Φ_k de ordem k, a mesma para todas as rectas que passam pelo referido ponto.

Por outras palavras, o ponto F_k tem por conjugados todos os pontos duma curva Φ_k , havendo todavia uma correspondência bi-unívoca entre os pontos dessa curva e as direcções por F_k . Exprime-se tambêm esta propriedade, dizendo que cada ponto de Φ_k tem por conjugado um ponto infinitamente próximo de F_k .

A recta r é portanto uma recta especial a que corresponde uma curva redutível, que conterá um ponto duplo resultante duma intersecção das duas curvas que a compõem; como só varia a parte de ordem m-k, quando r descreve o feixe de centro F_k , êsse ponto duplo descreve

⁽¹⁾ Veja-se a nota ao n.º 5.

 Φ_k ; logo esta curva faz parte da jacobiana da rede que temos considerado.

Estendendo a todos os pontos bases da rede o que dissemos a propósito de F_k , reconhece-se que a totalidade das curvas análogas a Φ_k é uma curva composta de ordem $\sum \alpha_k k = 3 m - 3$, que coincide portanto com a jacobiana da rede.

Os pontos bases da rede pertencem portanto a infinitos pares de elementos conjugados da involução e dizem-se fundamentais; as curvas fixas a êles associadas chamam-se curvas fundamentais; ordem dum ponto fundamental é a ordem da curva fundamental respectiva; os pontos e as curvas fundamentais constituem o sistema fundamental da involução.

- 16. O conhecimento do sistema fundamental conduz-nos a algumas proposições importantes:
- I. O conjugado dum ponto P não situado no sistema fundamental é um ponto P' não situado tambêm no sistema fundamental.

Com efeito, se P' estivesse sôbre um ponto ou uma curva fundamental, P deveria estar respectivamente sôbre uma curva ou um ponto fundamental, contra a hipótese.

II. — Dois pontos distintos P e Q não situados no sistema fundamental teem por conjugados dois pontos P' e Q' também distintos.

Efectivamente, se estes coincidissem num só, êste seria um ponto fundamental e P e Q estariam sôbre a curva fundamental respectiva.

III.—A involução determina uma correspondência projectiva entre os raios dos feixes com centro em dois pontos conjugados não situados no sistema fundamental, se fizermos corresponder a cada raio r dum deles a tangente t no outro à curva C," relativa àquele raio.

Em primeiro logar, quando r descreve o feixe de centro P (ou P'), a curva C_r^m descreve um feixe com um ponto base simples em P' (ou P), e por consequência a tangente t a essa curva neste ponto descreve tambêm um feixe. Por outra parte, a uma recta r nunca pode corresponder senão uma recta t, porque, se correspondessem duas, C_r^m teria um ponto duplo em P' (ou P), e êste estaria sôbre uma curva fundamental, contra a hipótese.

17. — As expressões (9) podem enunciar-se agora sob a forma seguinte:

Teorema: — A soma das ordens dos pontos fundamentais duma involução cremoniana de ordem m é igual a 3 m - 3 e a soma dos seus quadrados a $\text{m}^2 - 1$.

Teem aqui logar as considerações feitas no n.º 10, notando que os dois sistemas fundamentais coincidem num só no caso presente.

As soluções de (9) até m=8 são dadas no seguinte quadro:

α1	1	2	3 4	4		5		6		7			8					
		3		6	3	8	3	0	10	1	12	2	0	14	3	1	0	00
α2			1	0	3	0	3	6	0	4	0	3	3	0	2	3	0	-
α3				1	0	0	1	0	0	2	0	2	4	0	3	2	7	(
a ₁			1			1	0	0	0	0	0	1	0	0	0	2	0	-
25									1	0	0	0	0	0	1	0	0	-
26											1	0	0	0	0	0	0	-
27	PET									33				1	0	0	0	-

Estão incluidas neste quadro a homologia harmónica (m=1) e as involuções quadráticas (m=2).

As involuções relativas à solução (para todos os valores de m)

$$\alpha_{m-1} = 1$$

$$\alpha_1 = 2 m - 2,$$

são conhecidas por involuções de Jonquières.

São tambêm interessantes as involuções com os pontos fundamentais da mesma ordem; designando por p a ordem de um deles, as equações (9) tomam a forma

$$\alpha_p \ p^2 = m^2 - 1$$
 $\alpha_p \ p = 3 \ m - 3,$
 $p = \frac{m+1}{3};$

donde

como p deve ser inteiro, m deve ser da forma 3i-1 e portanto

$$p = i$$
 $\alpha_p = \frac{9i - 6}{i}$,

a última das quais só dá valores inteiros para α_p , quando fôr i=1, 2, 3, 6.

Logo as involuções com pontos fundamentais equimúltiplos são: as involuções quadráticas; as involuções de 5.ª ordem com 6 pontos fundamentais duplos; as involuções de 8.ª ordem com 7 pontos fundamentais triplos; as involuções de 17.ª ordem com 8 pontos fundamentais sêxtuplos.

18. — Teorema. A soma dos números que exprimem as ordens dos três pontos fundamentais de ordem mais elevada é maior do que m.

Sejam $r \le s \le t$ as ordens dêsses pontos; podemos dar às expressões (9) a forma

$$\alpha_1 + 4 \alpha_2^2 + \ldots + r^2 = m^2 - 1 - s^2 - t^2$$

 $\alpha_1 + 2 \alpha_2 + \ldots + r = 3 m - 3 - s - t$.

Subtraindo membro a membro a primeira da segunda multiplicada por r, o primeiro membro da igualdade que assim se obtêm é positivo ou nulo, porque cada termo é da forma $k(r-k)\alpha_k$, onde $r \ge k$; logo, obtemos

$$m^2-1-s^2-t^2 \le r (3m-3-s-t).$$

Ora, se fosse $m \ge r + s + t$, teríamos

$$r(3r-3+2s+2t) > r^2+2(rs+rt+st)-1$$
,

ou ainda

$$2r^2-2st-3r+1\geq 0$$
,

que é absurdo, porque temos $r^2 \le st$ e 3r > 1, visto r ser pelo menos igual à unidade. Logo o teorema é verdadeiro.

A relação

$$r+s+t>m$$
,

que exprime o teorema que acabamos de demonstrar, pode escrever-se sob a forma

$$r+s+t>m+1,$$

da qual resulta a fortiori

$$t \ge \frac{m+1}{3}$$

Ora no número anterior mostramos que o sinal de igualdade nesta expressão só tem logar para quatro involuções com pontos fundamentais equimúltiplos. Logo

TEOREMA: Todas as involuções de ordem m teem pelo menos um ponto fundamental de ordem maior do que $\frac{m+1}{3}$, excepto as involuções que teem todos os pontos fundamentais equimúltiplos, em que a ordem dêstes é igual a êsse número.

§ 5.º — Propriedades das curvas fundamentais

19. — A maior parte das propriedades que vamos estudar neste parágrafo teem apenas logar para as involuções com pontos fundamentais distintos; apesar da sua falta de generalidade, êste estudo oferece bastante interesse.

As curvas fundamentais só se encontram em pontos fundamentais.

Um ponto de intersecção de duas curvas fundamentais deve ter por conjugados os pontos fundamentais relativos a essas curvas, isto é, pertence a mais de um par de elementos conjugados da involução; logo é um ponto fundamental.

Se empregarmos o símbolo α_{kl} para designar o número de ramos com que a curva fundamental Φ_k passa pelo ponto fundamental F_l , para duas curvas Φ_l e Φ_i deve verificar-se a igualdade

(10)
$$\sum_{k} \alpha_{lk} \alpha_{ik} = li,$$

em que a soma indicada no primeiro membro se estende a todos os pontos fundamentais por onde passam simultâneamente as duas curvas.

Uma curva C^m relativa a uma recta genérica do plano e uma curva fundamental encontram-se apenas em pontos fundamentais.

Seja C^m a curva correspondente a uma recta r e Φ_k a curva fundamental; se as duas curvas se encontrassem num ponto não fundamental, em virtude dêste ter por conjugado o ponto fundamental F_k , a recta r deveria passar por êste ponto, contra a hipótese. Logo a proposição enunciada é verdadeira e tem logar a relação

(11)
$$\sum_{l} l \alpha_{kl} = m k,$$

onde Σ se refere a todos os pontos fundamentais por onde passa a curva fundamental F_k .

20. — Seja α_{kl} o número de vezes que a curva fundamental Φ_k passa por F_l ; às direcções das α_{kl} tangentes a Φ_k neste ponto correspondem outros tantos pontos sôbre Φ_l ; mas estes pontos devem coincidir todos com F_k , porque F_k é conjugado de todos os pontos de Φ_k ; logo

(12)
$$\alpha_{kl} = \alpha_{lk},$$

isto é, o número de vezes que uma curva fundamental Φ_k passa pelo ponto fundamental F_l é igual ao número de vezes que a curva fundamental Φ_l passa pelo ponto fundamental F_k .

O mesmo raciocínio leva-nos à conclusão de que as curvas fundamentais teem os seus pontos múltiplos nos pontos fundamentais.

21. — Vimos que havia uma correspondência bi-unívoca entre os pontos duma curva fundamental e as direcções dos raios do feixe com centro no ponto fundamental respectivo; logo as curvas fundamentais são unicursais. Para a curva Φ_k , por exemplo, terá logar a relação

(13)
$$\sum_{l} \frac{\alpha_{kl} (\alpha_{kl} - 1)}{2} = \frac{(k-1)(k-2)}{2}.$$

Por outra parte, se a curva C^m correspondente a uma recta do plano encontra a curva fundamental Φ_k , essa recta passa por F_k e C^m degenera, decompondo-se na própria curva Φ_k e noutra curva de ordem m-k; esta curva residual passa ainda com $l-\alpha_{kl}$ ramos por todo o ponto fundamental F_l ; logo o número de intersecções destas curvas fora dos pontos fundamentais é dado pela expressão.

$$k(m-k) - \sum_{l} \alpha_{kl} (l - \alpha_{kl}) = \sum_{l} \alpha_{kl}^2 - k^2$$

e igual à unidade pelo que há pouco dissemos; logo

$$\sum_{l} \alpha_{kl}^2 = k^2 + 1.$$

Comparando esta expressão com (13), obtêm-se

$$\sum_{l} \alpha_{kl} = 3 k - 1,$$

 $\label{logo:logo} \begin{tabular}{ll} Logo: a soma das ordens de multiplicidades duma \\ curva fundamental de ordem k em todos os pontos fundamentais é igual a 3 k - 1 e a soma dos quadrados a k²+1. \\ \end{tabular}$

Atendendo ao n.º 20, podemos acrescentar que o nú-

mero de ramos de curvas fundamentais que passam por um ponto fundamental F_k é igual a 3k-1, etc.

Tendo nós reconhecido que a jacobiana da rede das curvas de ordem m correspondentes às rectas do plano coincide com a totalidade das curvas fundamentais da involução, êste resultado está de acordo com a teoria das curvas algébricas planas.

Do facto da jacobiana ficar determinada pelos pontos fundamentais da involução (pontos bases da rede), não podemos concluir que qualquer curva fundamental fique completamente determinada pela maneira como se comporta nos pontos fundamentais; mas a relação

$$\sum_{l} \frac{\alpha_{kl} (\alpha_{kl}+1)}{2} = \frac{k (k+3)}{2},$$

que se deduz de (14) e (15), esclarece esta dúvida: — Uma curva fundamental fica determinada pelos pontos fundamentais por onde passa.

22. — O quadrado do determinante formado pelos α_{kl} é igual a m² (CLEBSCH).

Com efeito, pelas conhecidas propriedades dos determinantes, por (9), (10) e (14) obtemos

$$\begin{vmatrix} \alpha_{11} \dots \alpha_{12} \dots \alpha_{4k} \dots \end{vmatrix}^{2} \begin{vmatrix} \sum_{l} \alpha^{2}_{4l} \dots \sum_{l} \alpha_{1l} \alpha_{2l} \dots \sum_{l} \alpha_{1l} \alpha_{kl} \dots \\ l \end{vmatrix}$$

$$\alpha_{21} \dots \alpha_{22} \dots \alpha_{2k} \dots = \begin{vmatrix} \sum_{l} \alpha_{2l} \alpha_{1l} \dots \sum_{l} \alpha^{2}_{2l} \dots \sum_{l} \alpha_{2l} \alpha_{kl} \dots \\ l \end{vmatrix}$$

$$\alpha_{k1} \dots \alpha_{k2} \dots \alpha_{kk} \dots = \begin{vmatrix} \sum_{l} \alpha_{kl} \alpha_{1l} \dots \sum_{l} \alpha_{kl} \alpha_{2l} \dots \sum_{l} \alpha^{2}_{kl} \dots \\ l \end{vmatrix}$$

$$\sum_{l} \alpha_{kl} \alpha_{1l} \dots \sum_{l} \alpha_{kl} \alpha_{2l} \dots \sum_{l} \alpha^{2}_{kl} \dots$$

$$=\begin{vmatrix} 1^2+1\dots 1 \cdot 2 \dots 1 \cdot k \dots \\ 2 \cdot 1 \dots 2^2+1 \dots 2 \cdot k \dots \\ k \cdot 1 \dots k \cdot 2 \dots k^2+1 \dots \end{vmatrix} = 1 + \sum_{k} \alpha_k k^2 = m^2.$$

23. — As equações (9) mostram que pode haver mais dum ponto fundamental com certa ordem; dizemos que os pontos fundamentais da mesma ordem formam um grupo.

Posto isto, consideremos dois grupos de ordem k e l. É natural que a curva fundamental relativa a um ponto do primeiro grupo passe por pontos do segundo; ordenemos êsses valores de an. Como não há razão para distinguir os pontos dum mesmo grupo, deve haver outra curva do primeiro grupo correspondente a outra permutação dos valores de aki; daqui resulta que o número ak de curvas (ou pontos) fundamentais de ordem k é igual ao número de permutações dos a pontos fundamentais de ordem l; logo $\alpha_k > \alpha_l$, visto considerarmos o caso de ser $\alpha_k > 1$ e $\alpha_l > 1$. Raciocinando do mesmo modo para as curvas do segundo grupo, conclue-se que é al > al. Chegamos assim a resultados contraditórios que deixam de subsistir, quando cada curva dum grupo passar o mesmo número de vezes por todos os pontos do outro ou não passar nenhuma vez. Se os dois grupos teem o mesmo número de pontos, tambêm não há contradição, se todas as curvas fundamentais dum grupo passarem o mesmo número de vezes por todos os pontos do outro, com excepção dum só ponto.

Da última observação resulta que cada curva fundamental dum grupo deve passar o mesmo número de vezes por todos os pontos fundamentais do mesmo grupo, ou por nenhum, ou o mesmo número de vezes por todos, à excepção dum. Pode completar-se esta propriedade mostrando que, no último caso, passando uma curva com α ramos pelos primeiros pontos, passa com $\alpha' = \alpha + 1$ ramos pelo restante.

Com efeito, se considerarmos duas curvas do mesmo grupo de ordem k, a expressão (10) toma a forma

$$\sum_{l}\alpha^{2}_{kl}-\alpha^{2}-\alpha'^{2}+2\alpha\alpha'=k^{2},$$

donde, por (14),

$$(\alpha'-\alpha)^2=1$$

ou

$$\alpha' = \alpha \pm 1$$
.

24. — Em todas as involuções, excepto na involução quadrática, há pelo menos uma curva fundamental que passa pelo respectivo ponto fundamental.

Designando por r, s, t as ordens dos três pontos (e curvas) fundamentais de ordens mais elevadas da involução, temos

$$r \ge \alpha_{rs} + \alpha_{rt} - 1$$

 $s \ge \alpha_{sr} + \alpha_{st} - 1$

 $t \geq \alpha_{tr} + \alpha_{ts} - 1$;

somando e pondo de parte o sinal de igualdade, que só diz respeito ao caso de cada uma das rectas de união de dois dêstes pontos ser a linha fundamental relativa ao outro (involução quadrática), vém

(a)
$$r+s+t>2(\alpha_{rs}+\alpha_{st}+\alpha_{lr})-3.$$

Por outro lado, à recta F_r F_s corresponde uma curva de ordem m-r-s que passa pelos mesmos pontos $r-\alpha_{rr}-\alpha_{rs}$ e $s-\alpha_{sr}-\alpha_{ss}$ vezes respectivamente; logo

$$m-r-s \ge r-\alpha_{rr}-\alpha_{rs}+s-\alpha_{sr}-\alpha_{ss}$$

ou

$$2(r+s) \leq m + \alpha_{rr} + \alpha_{ss} + 2\alpha_{rs}$$

que tem logar mesmo no caso de F_r F_s ser fundamental ou conter outro ponto fundamental. Procedendo do mesmo modo para as rectas F_s F_t e F_t F_r e somando, obtemos

(b)
$$4(r+s+t) \leq 3m+2(\alpha_{rr}+\alpha_{ss}+\alpha_{tt}+\alpha_{rs}+\alpha_{st}+\alpha_{tr}).$$

Troquemos os sinais aos termos de (a) e somemo-la membro a membro com (b); obtemos

$$3(r+s+t) < 3m+3+2(\alpha_{rr}+\alpha_{ss}+\alpha_{tl})$$

e, atendendo à relação (n.º 18)

$$r+s+t \ge m+1$$
,

vem finalmente

$$\alpha_{rr} + \alpha_{ss} + \alpha_{tt} > 0$$
,

que demonstra a proposição enunciada.

25. — Uma involução cremoniana de ordem superior a 2 fica determinada pelo seu sistema fundamental (BERTINI). As fórmulas (9) dão imediatamente a ordem da involução. Á recta de união dos pontos fundamentais F_i e F_j , caso não seja fundamental, corresponde uma curva de ordem m-i-j que passa por um ponto fundamental F_k com $k-\alpha_{ik}-\alpha_{jk}$ ramos. A identidade

$$\sum_{k} \frac{(k-\alpha_{ik}-\alpha_{jk})(k-\alpha_{ik}-\alpha_{jk}+1)}{2} = \frac{(m-i-j)(m-i-j+3)}{2},$$

que se obtêm, atendendo a (9), (10) e (11), mostra que essa curva é determinada pelos pontos fundamentais, qualquer que seja a involução que possa ter aquele sistema fundamental. A mesma curva encontra Φ_i num ponto correspondente à direcção de F_i F_j por F_i . Considerando agora as rectas não fundamentais dirigidas de F_i para três pontos fundamentais, obteem-se três pontos sôbre Φ_i , que fixam uma projectividade entre as direcções por F_i e os pontos de Φ_i , qualquer que seja a involução.

Se $i \ge 2$, dada uma recta genérica r, a curva correspondente de ordem m fica bem determinada pelos pontos fundamentais e pelas tangentes em F_i , correspondentes aos pontos onde r encontra Φ_i ; a involução é portanto única e bem determinada.

Se não houver pontos fundamentais simples, o raciocínio é aceitavel porque as rectas de união de F_i com os outros pontos não são fundamentais. Se é i=1 e não passa por F_i nenhuma recta fundamental, procedendo do mesmo modo com outro ponto F_j , chega-se ao mesmo resultado. Se é i=1 e passa por F_i uma recta fundamental dirigida para F_j , temos j=m-1 e a involução é de Jonquières; ora neste caso por cada ponto simples passam pelo menos três rectas não fundamentais dirigidas para outros pontos simples, porquanto, atendendo a (9), sôbre duas das rectas que passam por êle não podem existir

mais de 2m-3 pontos fundamentais simples. A proposição é portanto verdadeira ainda neste caso.

Só para m = 2 é impossível a construção indicada.

§ 6.º — Elementos duplos e classe duma involução

26. — Quando dois pontos conjugados coincidirem, diremos que formam um ponto duplo da involução.

O logar dos conjugados dos pontos duma recta genérica do plano duma involução é uma curva de ordem m; a mesma recta encontra esta curva em m pontos que, dado o caracter involutivo da correspondência, só podem ser conjugados dois a dois ou duplos. Inversamente, a curva correspondente a uma recta dada passa pelos pares de pontos conjugados e pelos pontos duplos que porventura existam sôbre essa recta.

Assim, se m é impar, há um número impar de pontos duplos (pelo menos um) sôbre cada recta do plano. Em geral existirá sôbre cada recta do plano um número de pontos duplos da mesma paridade que a ordem da involução; o logar dêstes pontos é uma curva de ordem

$$\delta = m - 2 \omega$$
,

que designamos por curva dupla da involução.

A constante ω exprime o número de pares de pontos conjugados que existem sôbre uma recta genérica do plano; é uma característica importante para cada involução, a que Caporali deu o nome de classe da involução.

São evidentes as seguintes proposições:

 a) Uma involução cremoniana de ordem impar contêm sempre uma curva dupla de ordem impar;

- b) Se fôr $m=2\omega$, a involução não contêm curva dupla.
- c) Nenhuma involução de ordem m pode conter uma curva dupla de ordem superior a m.
- d) Se for $\delta = m$ e portanto $\omega = 0$, sobre uma recta genérica não existe nenhum par de pontos conjugados.

Sejam, porêm, P e P' dois pontos conjugados; a sua recta de união r encontra a curva dupla em m pontos; a curva de ordem m correspondente a r deve passar por êsses pontos e por P e P'; a recta r, tendo mais de m pontos comuns com a curva correspondente, faz parte dela; e, como o mesmo tem logar para as rectas de união de todos os pares de pontos conjugados, devem todas elas passar por um ponto fundamental O de ordem n-1. A involução é de Jonquières e diz-se perspectiva, porque todos os pontos conjugados estão alinhados com o ponto O, centro da involução. Veremos depois a importância destas involuções.

27. — Pode acontecer que uma curva fundamental Φ_k passe α_{kk} vezes pelo respectivo ponto fundamental F_k ; cada um dos ramos dessa curva que passam por F_k tem sôbre êste um ponto, cujo conjugado é o próprio ponto F_k associado a uma direcção determinada, que pode ser distinta ou coincidir com a tangente a êsse ramo. No primeiro caso, dado o caracter involutivo da correspondência, passará outro ramo de Φ_k por F_k , tendo a tangente naquela direcção. No segundo, o ponto F_k é um verdadeiro ponto duplo e a curva dupla deve passar por êle e ter a tangente naquela direcção, isto é, oscula o referido ramo de Φ_k . Se designarmos por δ_k o número de ramos de Φ_k que passam por F_k nas condições indicadas em segundo logar, tambêm δ_k exprime o número de ramos da curva dupla

que passam pelo ponto fundamental F_k , e a diferença $\alpha_{kk} - \delta_k$ é sempre par ou nula.

O raciocínio que acabamos de seguir leva-nos tambêm a concluir que a curva dupla duma involução não pode encontrar nenhuma curva fundamental senão em pontos fundamentais. Logo, para Φ_k tem logar a relação

$$\delta_k + \sum_l \delta_l \alpha_{kl} = \delta k = (n-2 \omega) k.$$

O género da curva dupla, caso não possua pontos múltiplos fora dos pontos fundamentais, é dado pela expressão

$$p_{\scriptscriptstyle 0} = \frac{(n-2\omega-1)(n-2\omega-2)}{2} - \frac{1}{2} \sum_{k} \delta_{k} (\delta_{k} - 1).$$

28.—Álêm da curva dupla, a involução pode conter pontos duplos isolados; não estamos ainda habilitados a calcular o seu número, mas podemos estudar a sua natureza.

A uma recta que passa por um ponto duplo da involução corresponde uma curva que passa pelo mesmo ponto; entre essas rectas e as tangentes nesse ponto às curvas correspondentes há portanto uma involução ordinária (n.º 16). Logo duas das rectas que passam pelo referido ponto são tangentes à curva correspondente, ou todas gosam desta propriedade; é esta a diferença essencial entre um ponto da curva dupla e um ponto duplo isolado.

Podemos tambêm dizer que um ponto da curva dupla tem por conjugados pontos infinitamente próximos em duas direcções (distintas, coincidentes ou imaginárias), uma das quais, tangente à curva dupla, toma o nome de recta principal; um ponto duplo isolado é comparável a um ponto, cujo conjugado seria infinitamente próximo numa direcção indeterminada.

§ 7.º — Curvas e sistemas lineares conjugados

29. — Seja C^n uma curva de ordem n do plano duma involução de ordem m; para maior generalidade, suponhamos que essa curva tem pontos múltiplos sôbre alguns ou todos os pontos fundamentais; seja precisamente γ_k o número de ramos com que C^n passa por F_k . A curva C^n encontra uma curva de ordem m correspondente a uma recta genérica do plano em $n m - \sum\limits_k \gamma_k k$ pontos não fundamentais, que devem ter por conjugados outros tantos pontos comuns a essa recta genérica e ao logar dos conjugados dos pontos de C^n . Logo êste logar é constituido por uma curva $C^{n'}$ de ordem

$$n'=n\ m-\sum_k\gamma_k.k.$$

Como Cⁿ encontra uma curva fundamental $\Phi_{\rm a}$ em

$$\gamma'_{k} = n k - \sum_{l} \gamma_{l} \alpha_{i,l}$$

pontos fora dos fundamentais, a curva $C^{n'}$ passa com outros tantos ramos por F_k , cujas tangentes neste ponto teem direcções correspondentes àqueles pontos de Φ_k .

Como os pontos de C^a e C^a são conjugados dois a dois, a primeira é tambêm o logar dos conjugados dos pontos da segunda; assim se justifica que chamemos às curvas, que assim se comportam na involução, conjugadas ou correspondentes.

Entre as suas ordens há, portanto, as relações

(16)
$$\begin{cases} \sum_{k} \gamma_{k} k = n m - n' \\ \sum_{k} \gamma'_{k} k = n' m - n, \end{cases}$$

e entre os números de ramos com que as duas curvas passam pelo mesmo ponto \mathbf{F}_k

(17)
$$\begin{cases} \sum_{l} \gamma_{l} \alpha_{kl} = n \, k - \gamma'_{k} \\ \sum_{l} \gamma'_{l} \alpha_{kl} = n' k - \gamma_{k}. \end{cases}$$

Se a curva C^n não passar por nenhum ponto fundamental, a curva conjugada é de ordem nm e passa nk vezes por um ponto fundamental de ordem k.

Se fôr $\Sigma \gamma_k k = n m$, isto é, se fôr n' = 0, nenhum ponto de Cⁿ tem por conjugado um ponto que não pertença ao sistema fundamental, ela própria é portanto uma curva fundamental de ordem n, e aquela expressão é a reprodução de (11).

30. — Entre os pontos de duas curvas conjugadas há uma correspondência bi-unívoca; logo (n.º 8) duas curvas conjugadas teem o mesmo género.

Com um raciocínio idêntico ao que empregamos no n.º 7, reconhece-se que curvas conjugadas se comportam do mesmo modo em pontos conjugados não fundamentais.

Assim, se uma curva Cⁿ tem num ponto P não fundamental um ponto múltiplo de ordem s, a sua conjugada Cⁿ tem um ponto múltiplo da mesma ordem no ponto conjugado P'. Se duas curvas C₁ e C₂ teem absorvidas i intersecções num ponto P não fundamental, as curvas conjugadas C'₁ e C'₂ terão absorvidas outras tantas intersecções no ponto P'; etc.

31. - Quando uma curva contêm um par de pontos

conjugados da involução, a curva conjugada passa evidentemente por êsses pontos. Se uma curva passa por um ponto duplo da involução, a curva conjugada passa tambêm por êsse ponto; se o ponto duplo é isolado, as duas curvas teem a mesma tangente nêsse ponto; se o ponto pertence à curva dupla, esta propriedade não tem logar senão em dois casos, por exemplo, quando a curva dada oscula a curva dupla nesse ponto.

Inversamente, os pontos de intersecção de duas curvas conjugadas, fora dos pontos fundamentais, são conjugados dois a dois ou duplos.

32. — Consideremos no plano duma involução cremoniana um sistema linear | C | de curvas algébricas de r dimensões, ordem n, género p e grau N. Cada curva dêste sistema tem por conjugada uma curva do mesmo género e de ordem determinada por (16); assim como por r pontos genéricos do plano passa uma só curva de | C |, tambêm pelos r conjugados dêsses pontos deverá passar uma só curva entre as conjugadas C' das curvas de | C |; logo as curvas C' formam um sistema linear | C' | das mesmas dimensões, que dizemos conjugado do proposto. É evidente que duas curvas genéricas de | C | e duas curvas genéricas de | C | se encontram em pontos conjugados; logo os dois sistemas teem o mesmo grau.

Imaginando para maior generalidade que o sistema linear |C| tem também pontos bases sôbre os pontos fundamentais da involução e designando por γ_k a ordem de multiplicidade no ponto F_k , podemos resumir estas propriedades no seguinte:

TEOREMA. — Um sistema linear de ordem n com um ponto base de ordem γ_k num ponto fundamental F_k , tem por conjugado um sistema linear do mesmo número de dimen-

sões, do mesmo género, do mesmo grau, de ordem

$$m' = n \ m - \sum_{k} \gamma_{k} k,$$

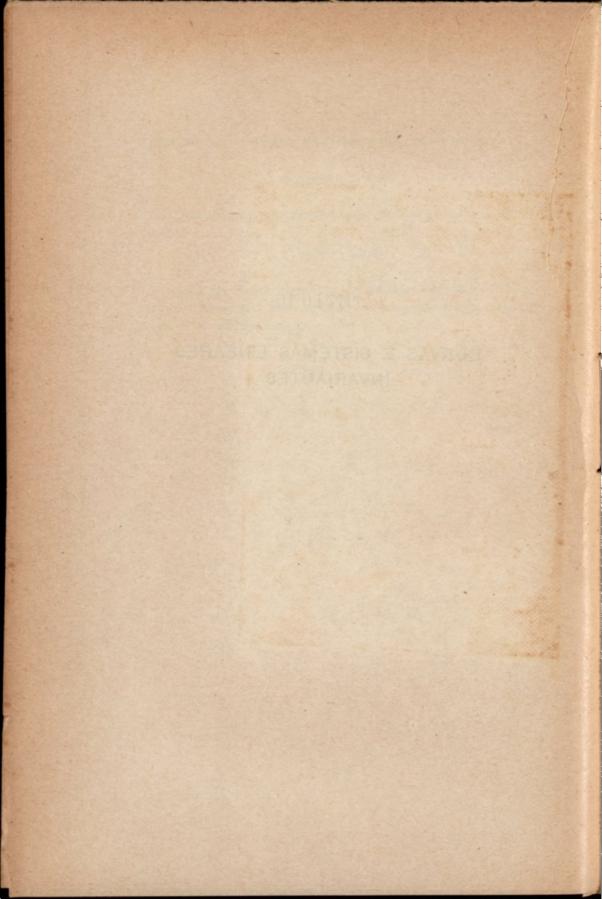
que tem num ponto fundamental F_k um ponto base de ordem

$$\gamma'_k = n k - \sum_l \gamma_l \alpha_{kl}$$

e os pontos bases restantes em pontos conjugados dos pontos bases não fundamentais do proposto e com igual ordem de multiplicidade.

CAPÍTULO III

CURVAS E SISTEMAS LINEARES INVARIANTES



CAPÍTULO III

Curvas e sistemas lineares invariantes

§ 8.º — Definições e propriedades

33. — Uma curva, cujos pontos são dois a dois conjugados ou duplos na involução, tem por conjugada a própria curva. É, portanto, um verdadeiro invariante geométrico relativamente à involução, e por isto a designamos por curva invariante da involução.

Se excluirmos a homologia harmónica, é evidente que uma curva invariante passa sempre por pontos fundamentais, de modo a abaixar a ordem da curva conjugada até à sua própria ordem; se C^n é uma curva invariante que passa com γ_k ramos pelo ponto fundamental F_k , qualquer das expressões (16) tomará neste caso a forma

(18)
$$\sum_{k} \gamma_{k} k = n (m-1),$$

onde o simbolo Σ se refere a todos os pontos fundamentais por onde passa C^n . A mesma curva encontra a curva fundamental Φ_k em γ_k pontos, conjugados das direcções das tangentes àqueles ramos de C_n que passam por F_k ; ter-se há, portanto, a relação

(19)
$$\gamma_k + \sum_l \gamma_l \, \alpha_{kl} = n \, k,$$

onde Σ se refere a todos os pontos fundamentais por onde passam simultâneamente Φ_k e C^n .

É manifesto que uma curva invariante, que passa por um ponto P não fundamental, passa tambêm pelo seu conjugado P'. Em geral se uma curva invariante tem um ponto múltiplo de ordem r num ponto não fundamental, terá no seu conjugado um ponto múltiplo da mesma ordem. Podemos exprimir abreviadamente esta propriedade, dizendo que uma curva invariante se comporta exactamente da mesma forma em elementos conjugados da involução.

TEOREMA. — Duas curvas invariantes fora dos pontos fundamentais só se encontram em pares de pontos conjugados ou em pontos duplos.

Se as duas curvas passam por determinado ponto não fundamental, ambas devem passar tambêm pelo conjugado, o que demonstra a primeira parte do teorema; quando o conjugado coincide com o próprio ponto, temos justificada a segunda parte.

34. — Dizemos que um sistema linear de curvas algébricas é *invariante* relativamente a uma involução, quando qualquer das suas curvas tem por conjugada uma curva do mesmo sistema.

O sistema tem necessáriamente alguns pontos bases sôbre os pontos fundamentais da involução. Á face do número anterior, é evidente o seguinte

TEOREMA.—Se um sistema linear de ordem n com um ponto base de ordem γ_k num ponto fundamental F_k , é invariante, devem verificar-se as seguintes condições:

a)
$$\sum_{k} \gamma_{k} k = n (m-1)$$

b)
$$\sum_{l} \gamma_{l} \alpha_{kl} = n k \quad (k = 1, 2 \ldots)$$

c) os pontos bases não fundamentais existirem em pontos conjugados com igual ordem de multiplicidade, ou em pontos duplos.

COROLÁRIO. — Se o sistema linear é completo, estas condições, àlêm de necessarias, são suficientes para êle ser invariante.

Com efeito, qualquer das suas curvas tem por conjugada uma curva da mesma ordem, em virtude de a); comportando-se como ela nos pontos bases do sistema que coincidem com pontos fundamentais, atendendo a b); comportando-se do mesmo modo nos pontos bases restantes, em virtude de c). Como o sistema é completo, esta curva faz tambêm parte dêle.

Se o sistema não têm pontos bases fora dos pontos fundamentais da involução, a condição c) é supérflua.

35. — Consideremos um sistema linear invariante ∞^r ; por r-i pontos genéricos do plano passam as curvas dum sistema ∞^i contido no proposto (n.º 2); as curvas dêste sistema teem por conjugadas as curvas do sistema proposto, que passam pelos conjugados daqueles r-i pontos, isto é, as curvas doutro sistema ∞^i contido tambêm no proposto.

Se os r-i pontos são conjugados dois a dois ou duplos, as curvas do sistema linear contido no sistema primitivo, e que se obtem pelo mesmo processo, tem por conjugadas curvas do próprio sistema, atendendo à condição c) do teorema do número anterior; por outras palavras, o sistema que assim se obtem é tambêm invariante. Logo

Teorema.—Um sistema linear de r dimensões (r > 1) invariante dá logar a um número ilimitado de sistemas de dimensões inferiores, tambêm invariantes, contidos no primitivo.

36. — Resumindo as propriedades expostas nos números anteriores, podemos dizer que num sistema linear or irredutível e invariante, $(r \ge 1)$, a cada curva corresponde outra do mesmo sistema, sua conjugada na involução; às curvas dum feixe contido nesse sistema correspondem as curvas dum feixe contido tambêm no sistema; em geral, às curvas de qualquer sistema contido no sistema proposto, correspondem as curvas dum sistema de igual número de dimensões contido no mesmo sistema. Quer dizer, se considerarmos o espaço abstracto de r dimensões Er, cujos pontos são as curvas dêsse sistema, a correspondência que a involução determina entre as suas curvas pode identificar-se a uma correspondência de caracter involutivo entre os pontos de Er, pela qual a cada ponto corresponde um-ponto, aos pontos duma recta os pontos doutra recta, e, em geral, aos pontos dum espaço E_i (i < r) contido em E_r , os pontos doutro espaço do mesmo número de dimensões contido em Er. Esta correspondência, segundo os princípios da Geometria projectiva superior, é uma homografia involutiva entre dois espaços de r dimensões sobrepostos.

Podemos, portanto, por uma simples troca de palavras, enunciar algumas propriedades importantes dos sistemas lineares invariantes, conhecidas as propriedades da homografia involutiva de E_r .

- 37. Recordam-se em poucas palavras as principais propriedades da homografia involutiva entre dois espaços lineares de r dimensões sobrepostos.
- 1) Se r+2 pontos, tais que qualquer grupo de r+1 deles não pertença a um mesmo espaço de r-1 dimensões, são duplos ou unidos, (isto é, teem por correspondentes o próprio ponto, todos os outros o são, e a homografia confunde-se com a identidade.

2) Numa homografia involutiva (diferente da îdentidade) existem sempre dois espaços E_i e E_j , sendo i+j=r-1, chamados fundamentais, formados de elementos duplos; qualquer par de pontos correspondentes determina uma recta unida (que se transforma em si mesma) que encontra os espaços fundamentais em dois pontos M_o e N_o ; todos os pares de pontos correspondentes sôbre essa recta formam uma involução, nunca parabólica, cujos pontos duplos são M_o e N_o ; por outras palavras, todos os pares de pontos correspondentes dessa recta separam harmónicamente M_o e N_o .

Em particular no espaço ordinário E₃, a homografia involutiva oferece duas modalidades: — a homologia harmónica, que contêm um ponto duplo (centro de homologia) e um plano constituido por pontos duplos (plano de homologia); — a homografia bi-axial harmónica, que contêm duas rectas enviesadas constituidas por pontos duplos (eixos da homografia). Na homologia harmónica dois pontos correspondentes estão alinhados com o centro e são separados harmónicamente por êste ponto e pelo que resulta da intercepção da recta que os une com o plano de homologia. Na homografia bi axial harmónica dois pontos correspondentes determinam uma recta que se apoia nos dois eixos, e são separados harmónicamente pelos pontos de apoio.

No plano E₂ a única homografia involutiva que existe é a homologia harmónica muito conhecida dos elementos. Tem um ponto duplo (centro de homologia) e uma recta formada por pontos duplos (eixo de homologia); dois pontos correspondentes são alinhados com o centro e são reparados harmónicamente por êste ponto e pelo que resulta da intercepção da sua recta de união com o eixo de homologia.

Na recta E₁, a homografia involutiva é uma involução ordinária, com dois pontos duplos que separam harmónicamente qualquer par de elementos correspondentes.

38. — Trasladando para o caso concreto que estamos tratando as propriedades que acabamos de recordar, podemos enunciar sem dilação as seguintes proposições:

Teorema I. — Se um sistema linear de curvas algébricas planas, de \mathbf{r} dimensões, irredutível e invariante relativamente a uma involução cremoniana, contiver $\mathbf{r}+2$ curvas invariantes, tais que qualquer grupo de $\mathbf{r}+1$ delas não faça parte dum sistema linear \mathbf{x}^{r-1} , todas as curvas do sistema são invariantes.

TEOREMA II. — Um sistema linear de r dimensões, irredutível e invariante em relação a uma involução cremoniana, cujas curvas não são todas invariantes, contêm sempre dois sistemas ∞^i e ∞^j (i+j=r-1) constituidos por curvas invariantes; duas curvas conjugadas do sistema determinam um feixe invariante com duas curvas invariantes, comuns a este feixe e a cada um desses dois sistemas ∞^i e ∞^j .

Em particular:

Teorema III. — Um sistema três vezes infinito irredutível e invariante, cujas curvas não são todas invariantes, contêm uma rede de curvas invariantes e uma curva tambêm invariante que não pertence a esta rede, ou dois feixes de curvas invariantes, sem nenhuma curva comum.

TEOREMA IV. — Uma rede irredutível e invariante, cujas curvas não são todas invariantes, contêm sempre um feixe de curvas invariantes e uma curva invariante, que não pertence a êste feixe.

Teorema V. — Um feixe irredutivel e invariante contêm

duas curvas invariantes; se contiver três, todas as outras o serão.

Estes teoremas aplicam-se indiferentemente a sistemas completos ou incompletos, com pontos bases ordinários ou não.

A única condição que é indispensável é a irredutibilidade do sistema; todavia, se o sistema é redutível e se compõe duma curva fixa e doutra que descreve um sistema linear irredutível (n.º 2, a), podemos aplicar ao sistema proposto a doutrina que acabamos de expôr, se despresarmos a parte fixa, que é necessariamente invariante; se as curvas dum sistema invariante se decompõem nas curvas dum feixe (n.º 2, b), as curvas correspondem-se como no caso geral, e o próprio feixe é evidentemente invariante.

39. — O Teor. I do número anterior chama a nossa atenção para os sistemas de curvas invariantes.

Neste caso, as curvas que passam por um ponto genérico do plano devem passar tambêm pelo conjugado dêsse ponto (n.º 33) e o sistema é composto (n.º 2). Quando o sistema é completo, o caso que mais interessa na investigação das propriedades das involuções cremonianas, tem logar o seguinte:

Teorema. — Um sistema linear completo, irredutível de género p, de grau N e superabundância σ , não pode ser formado só de curvas invariantes, se fôr N > 2 (p $-\sigma$).

Seja r o número de dimensões do sistema; se todas as curvas dêste são invariantes, em virtude do que dissemos acima, as curvas, que passam por r-1 pares de pontos conjugados da involução, não poderão ter infinitos pontos comuns àlêm dêstes; logo o grau, que se definiu como o número de pontos de intersecção de duas curvas genéricas do sistema, não poderá ser inferior a 2(r-1); pela ex-

pressão (6) será portanto

 $N \ge 2 (N - p + \sigma),$

donde

$$N \leq 2(p-\sigma)$$
.

Logo o sistema não pode ser formado de curvas invariantes, se fôr

$$N > 2 (p - \sigma)$$
.

COROLÁRIO. — Um sistema linear irredutivel, completo e regular não pode ser constituido apenas por curvas invariantes, se o grau fôr maior que o dobro do género.

Basta notar que neste caso é $\sigma = 0$.

§ 9.º — Construção de curvas e sistemas lineares invariantes

40. — Vamos mostrar neste parágrafo que uma involução contêm um número ilimitado de curvas e sistemas lineares invariantes, e indicar processos de os construir.

O exemplo mais singelo duma curva invariante é a curva composta por duas curvas conjugadas; assim, uma recta e a curva sua conjugada constitue uma curva invariante de ordem m+1 (redutível). Estas curvas determinam um sistema (não linear) de curvas invariantes contidas num sistema linear invariante, constituido pela totalidade das curvas de ordem m+1 que teem por pontos bases os pontos fundamentais da involução e com a mesma ordem de multiplicidade.

Com efeito, as relações

$$\sum_{k} \alpha_{k} k^{2} = (m+1) (m-1)$$

$$k + \sum_{l} l \alpha_{lk} = (m+1) k \quad (k=1, 2, ...),$$

que se obteem, atendendo a (9) e (10), indicam que as condições a) e b) do teorema do n.º 34 são satisfeitas; por outro lado a condição c) é supérflua.

Como a rede das curvas de ordem m, conjugadas das rectas do plano, constitue um sistema linear, irredutível, completo e regular relativamente ao grupo base constituido pelos pontos fundamentais da involução, o sistema linear $|C^{m+4}|$ que acabamos de considerar é tambêm irredutível, completo e regular; terá portanto as dimensões

$$r = \frac{(m+1)(m+4)}{2} - \sum_{l} \alpha_{k} \frac{k(k+1)}{2} = m+4,$$

o género

e

$$p = \frac{m(m-1)}{2} - \sum_{k} \alpha_{k} \frac{(k-1)(k-2)}{2} = m-1$$

e o grau

$$N = (m+1)^2 - \sum_k \alpha_k k^2 = 2 m + 2.$$

41. — Logo que a involução contêm um sistema linear invariante, conterá um número ilimitado de sistemas lineares invariantes, subordinados daquele; entre êstes alguns serão constituidos por curvas invariantes.

Se uma rede é invariante, uma das suas curvas não invariantes com um ponto duplo, tem por conjugada uma curva da mesma rede com um ponto duplo no conjugado dêsse ponto; se a curva é invariante e tem um ponto

duplo, ela própria terá no conjugado outro ponto duplo. Por consequência, a jacobiana da rede, que é o logar dêsses pontos, será uma curva invariante. E em geral, as jacobianas das redes invariantes contidas num sistema linear invariante de mais de duas dimensões, constituem um sistema linear de curvas invariantes.

42. — Teorema. O produto de dois feixes de ordens m e m', conjugados numa involução cremoniana (logar dos pontos de intersecção das curvas conjugadas) é uma curva invariante de ordem m+m'.

Sejam $|C^m|$ e $|C^{m'}|$ os dois feixes conjugados, e g uma recta qualquer do plano; cada ponto A desta recta determina uma curva de $|C^m|$, cuja conjugada de $|C^{m'}|$ encontra a mesma recta em m' pontos B; inversamente, um ponto B da recta g determina uma curva de $|C^{m'}|$, cuja conjugada em $|C^m|$ encontra a mesma recta em m pontos. Por conseguinte, os dois feixes estabelecem sôbre a recta arbitrária g uma correspondência m a m', que tem m+m' pontos duplos, segundo o princípio fundamental de Chasles; êstes pontos duplos são evidentemente os pontos do logar considerado que existem sôbre essa recta. Êste logar é portanto uma curva K de ordem m+m'. Para reconhecer que esta curva é invariante, basta recordar que os pontos de intersecção de duas curvas conjugadas só podem ser conjugados dois a dois ou duplos.

Vejamos algumas propriedades desta curva:

a) Como qualquer ponto duplo da involução determina uma curva dum dos feixes, da qual a conjugada passa pelo mesmo ponto, a curva K contêm todos os pontos duplos. Assim, se a involução contiver uma curva dupla de ordem $\delta = n - 2 \omega$, a curva K decompor-se há nesta curva e numa outra de ordem $m + m' - \delta$.

b) A curva K passa com s ramos por todo o ponto base não fundamental de ordem k de qualquer dos feixes.

Com efeito, um ponto base dum dos feixes determina uma curva do outro, cuja curva conjugada passa com s ramos pelo mesmo ponto.

Por êste processo podemos construir um número ilimitado de curvas invariantes.

43. — Teorema. O logar dos pares de pontos conjugados (ou duplos) duma involução cremoniana existentes sôbre as tangentes a uma curva Γ de classe μ é uma curva invariante de ordem μ (m+1).

Tomemos no plano uma recta arbitrária g; por um ponto A dessa recta passam μ tangentes a Γ, cada uma das quais tem por conjugada uma curva de ordem m; estas curvas encontram a mesma recta q em µm pontos B; inversamente por um ponto B desta recta passam todas as curvas de ordem m conjugadas das rectas que passam pelo conjugado de B; destas, μ são tangentes à curva Γ e encontram a recta g em outros tantos pontos A. Por conseguinte, a involução juntamente com a curva Γ estabelece sôbre cada recta g do plano uma correspondência, pela qual a cada ponto A correspondem um pontos B e a cada ponto B, µ pontos A; nesta correspondência, segundo o princípio fundamental de Chasles, há μ (m+1)pontos duplos; ora a coincidência dum ponto A com um ponto B significa que a recta de união dêste ponto de g com o seu conjugado é tangente à curva Γ; cada um dêstes pontos pertence portanto ao logar considerado, que é, em vista do que dissemos, uma curva J de ordem μ (m+1), evidentemente invariante.

Vejamos algumas propriedades desta curva.

a) A curva J passa µk vezes por cada ponto funda-

mental de ordem k. Com efeito, por um ponto fundamental F_k podemos conduzir μ tangentes a Γ , cada uma das quais encontra a curva fundamental respectiva ou k pontos; o ponto F_k tem portanto μk pontos conjugados nas condições em que definimos a curva J e é um ponto múltiplo desta ordem de multiplicidade para essa curva.

Do raciocínio que acabamos de seguir, conclue-se tambêm a seguinte propriedade:

- b) A curva J passa pelos pontos de intersecção de cada curva fundamental com as tangentes conduzidas a Γ pelo ponto fundamental respectivo.
- c) A curva J contêm todos os pontos duplos da involução como pontos múltiplos de ordem μ .

Com efeito, um ponto duplo da involução, que devemos considerar como dois pontos conjugados coincidentes, existe sôbre μ tangentes à curva Γ . Daqui resulta tambêm a seguinte propriedade:

- d) Se a involução contiver uma curva dupla de ordem $\delta = m 2 \omega$, a curva J decompõe-se nesta curva contada μ vezes e numa curva de ordem μ (2 $\omega + 1$).
- e) Qualquer tangente a Γ encontra a curva de ordem m conjugada em m pontos que, sendo conjugados dois a dois ou duplos, pertencem à curva J; esta observação permite definir a curva J como o logar das intersecções das tangentes a uma curva de classe μ com as respectivas curvas conjugadas.

Utilizando esta doutrina, podemos construir um número ilimitado de curvas invariantes como a curva J.

44. — Vimos no n.º 24 que, exceptuando a involução quadrática, todas as involuções teem uma curva fundamental que passa pelo respectivo ponto fundamental. Seja Φ_t uma delas. O sistema linear completo, cons-

títuido pela totalidade das curvas de ordem t, que se comportam como Φ_t nos pontos fundamentais da involução, excepto em F_t , no qual teem um ponto múltiplo de ordem $\alpha_u - 1$, tem a dimensão α_u e o género $\alpha_u - 1$, como é fácil de deduzir das formulas do n.º 21. Êste sistema é invariante, porquanto as identidades

$$\sum_{k} \alpha_{lk} k - t \equiv t (m-1)$$
 $\sum_{l} \alpha_{ll} \alpha_{kl} \equiv t k \quad (k=1, 2, \ldots),$

que se obteem, atendendo a (10) e (11), mostram que as condições a) e b) do teorema do n.º 34 são satisfeitas, sendo a c) supérflua.

45. — Na teoria das curvas algébricas planas, chama-se curva adjunta duma curva C^n a toda a curva de qualquer ordem que possue um ponto múltiplo de ordem s-1 em cada ponto múltiplo de ordem s de C^n .

Tem para nós particular interêsse o sistema linear completo e regular constituido pela totalidade das curvas adjuntas de ordem n-3 duma curva irredutível C^n de ordem n>3 e género p>1. Se supozermos que esta curva tem ν pontos múltiplos de ordem $s_1, s_2, \ldots s_i, \ldots s_{\nu}$, o número de dimensões, o género e o grau daquele sistema, chamado primeiro adjunto de C^n , são

$$r_{1} = \frac{(n-3)n}{2} - \sum_{i=1}^{\nu} \frac{(s_{i}-1)s_{i}}{2} = p-1$$

$$p_{1} = \frac{(n-4)(n-5)}{2} - \sum_{i=1}^{\nu} \frac{(s_{i}-1)(s_{i}-2)}{2}$$

$$N_{1} = (n-3)^{2} - \sum_{i=1}^{\nu} (s_{i}-1)^{2}.$$

Sistema primeiro adjunto dum sistema de ordem n>3 e género p>1 é o sistema adjunto da sua curva genérica.

Ao primeiro adjunto do primeiro adjunto duma curva ou dum sistema chama-se segundo adjunto dessa curva ou sistema; e assim sucessivamente.

Em virtude da primeira das expressões acima indicadas, reconhecemos que o número de dimensões dum sistema adjunto de qualquer espécie é igual ao género do anterior, diminuido duma unidade.

Entre o género p de C^n e os género p_1 e p_2 dos dois primeiros adjuntos, há a relação

$$2p_1 - p - p_2 = v - 9$$

que se obtêm pelo simples confronto dos seus valores. Em geral, entre os géneros e entre as dimensões de três sistemas adjuntos consecutivos há as relações

$$2 p_{j} - p_{j-1} - p_{j+1} = v + 9$$

$$2 r_{j+1} - r_{j} - r_{j+2} = v + 9.$$

0

Do mesmo modo, entre quatro sistemas adjuntos consecutivos há as relações

$$p_j - p_{j+4} = 3 (p_{j+4} - p_{j+2})$$

$$r_{j+4} - r_{j+5} = 3 (r_{j+2} - r_{j+3}) + 4.$$

A importância dêstes sistemas neste estudo provêm de que o sistema primeiro adjunto duma curva Cⁿ invariante é tambêm invariante. Com efeito, das relações (18) e (19), a que obedece essa curva pelo facto de ser invariante, deduzem-se as relações

$$\sum_{k} (\gamma_k - 1) \ k = (n - 3) \ (m - 1)$$
$$(\gamma_k - 1) + \sum_{l} (\gamma_l - 1) \ \alpha_{kl} = (n - 3) \ k \ (k = 1, 2, ...),$$

que exprimem as condições a) e b) do n.º 34 para êsse sistema ser invariante; por outro lado a condição c) é satisfeita, porque, sendo C* invariante, os seus pontos múltiplos não fundamentais, e portanto os restantes pontos bases do primeiro adjunto, serão conjugados dois a dois e de igual ordem.

É claro que o sistema adjunto dum sistema invariante é tambêm invariante e portanto o segundo adjunto, o terceiro, etc.

Os sistemas de ordem n+3, n+6, etc., que teem em cada ponto base de ordem s dum sistema linear invariante de ordem n, um ponto base de ordem s+1, s+2, etc., são tambêm invariantes, como facilmente se reconhece, procedendo análogamente.

46. — Podíamos multiplicar indefinidamente os processos de obter curvas e sistemas lineares invariantes, mas os que expuzemos são suficientes para as aplicações que fazemos neste trabalho.

§ 10.º — Aplicação do estudo das curvas e sistemas lineares invariantes à investigação dalgumas propriedades das involuções

47. — O estudo que acabamos de fazer sôbre curvas e sistemas lineares invariantes, habilita-nos a procurar mais algumas propriedades das involuções; o êxito dêste pro-

cesso depende sobretudo da escolha duma curva ou dum sistema linear conveniente.

Por exemplo o estudo das curvas J, logar dos pontos conjugados e duplos existentes sôbre as tangentes a uma curva (n.º 43), permite-nos calcular o número de pontos de uma curva C de ordem n e classe μ , cujo conjugado existe sôbre a tangente à curva nesse ponto. Êste número é dado evidentemente pelo número n μ (2 ω + 1) de intersecções da curva dada com a curva J de ordem μ (2 ω + 1) respectiva.

48. — Se no caso estudado no n.º 43 a curva Γ fôr de primeira classe, ou no estudado no n.º 42 um dos feixes fôr um feixe de raios, a curva invariante, que assim obtem, será de ordem m+1 e poderá definir-se como o logar dos pares de pontos conjugados da involução alinhados com um ponto P do plano, ou como o logar dos pontos de intersecção das curvas correspondentes de dois feixes conjugados, um o feixe de raios com centro em P, outro, o feixe das curvas de ordem m conjugadas, as quais passam pelo conjugado de P. Jonquières designou esta curva por curva isóloga relativa ao ponto P, centro de isologia. Representamo-la por I_P.

As suas propriedades deduzem-se tão simplesmente das curvas J e K, estudadas no § anterior, que nos limitamos a enunciá-las.

A curva I_P passa pelo seu centro e pelo ponto conjugado.

Uma curva I_P passa simplesmente por todos os pontos duplos da involução.

Assim, se a involução contiver uma curva dupla de ordem $\delta=m-2$ ω , as curvas I_P decompõem-se nesta curva e noutra curva invariante de ordem $2 \omega + 1$.

Uma curva I_P contêm cada ponto fundamental de ordem k como ponto múltiplo da mesma ordem de multiplicidade e passa pelos pontos de intersecção de cada curva fundamental Φ_k com a recta de união do centro com o respectivo ponto fundamental.

Posto isto, analisemos detalhadamente como as curvas I_P se comportam nos pontos fundamentais.

Seja F, um deles; supomos, para maior generalidade, que a curva fundamental respectiva passa ak vezes por êsse ponto, e que a involução contêm uma curva dupla de ordem $\delta = m - 2\omega$ que passa com δ_k ramos pelo mesmo ponto fundamental. A curva Ip, relativa a um ponto genérico P, contêm neste caso a curva dupla, e a parte restante, de ordem $2\omega + 1$, passa com $k - \delta_k$ ramos por F_k ; com efeito, das $\alpha_{kk} - \delta_k$ passagens de Φ_k por F_k , proveem outros tantos ramos de Ip por êsse ponto, cujas tangentes são independentes da posição do centro P; e das $k - \alpha_{kk}$ intersecção do raio P F_k com Φ_k , fora de F_k, proveem outros tantos ramos de IP, que passam pelo referido ponto, cujas tangentes dependem, porêm, da posição do ponto P. O número total de ramos de Ip, que passam por F_k , é portanto $k-\delta_k$, como queríamos demonstrar.

Assim se verifica que a curva composta da curva dupla e da parte restante de I_P passa k vezes por F_k .

Como é sempre $\alpha_{kk} \leq k-1$, podemos enunciar mais esta propriedade: uma curva I_P passa por todos os pontos fundamentais, uma vez pelo menos.

O género duma curva I_P, relativa a um ponto générico P, é dado pela expressão

$$p_1 = \omega (2 \omega - 1) - \frac{1}{2} \sum_{k} (k - \delta_k) (k - \delta_k - 1)$$

ou, atendendo a relações conhecidas,

$$p_{1} = \frac{m(m+1)}{2} - 2m\omega + 2\omega^{2} + \omega - 1 - \frac{1}{2}\Sigma\delta_{k}(\delta_{k} - 1)$$

$$= 2\omega - 1 + \frac{\delta(\delta + 1)}{2} - \frac{1}{2}\Sigma\delta_{k}(\delta_{k} - 1).$$

Se a curva dupla não contiver singularidades fora dos pontos fundamentais, será

$$p_1 = p_0 + m - \omega - 1$$
.

49. — Teorema. As curvas I_P relativas a todos os pontos do plano formam uma rede de curvas invariantes relativamente à involução.

Com efeito, por dois pontos arbitrários do plano passa apenas uma dessas curvas, cujo centro é determinado pela intersecção das rectas que unem os pontos dados com os respectivos conjugados.

Os pontos bases desta rede são os pontos fundamentais e os pontos duplos da involução; do que dissemos no número anterior, resulta que as curvas I_P teem pontos bases simples nestes últimos; mas num ponto fundamental F_k teem um ponto base de ordem $k - \delta_k$, com $\alpha_{kk} - \delta_k$ tangentes fixas e as restantes variáveis com o centro P (uma, pelo menos).

Êste ponto base só será ordinário (com todas as tangentes variáveis), quando a curva fundamental relativa a F_k não passar por êste ponto.

Se dois pontos são tomados de modo que êles e os seus conjugados estejam sôbre uma recta, há infinitas curvas I_P, que passam por êles (e não uma); estas curvas são relativas aos pontos daquela recta e formam um feixe

tendo como pontos bases, alêm dos mencionados, os ω pares de pontos conjugados, que existem sôbre essa recta.

As curvas I_P , relativas aos pontos duma recta que passa por um ponto fundamental F_k , teem as mesmas tangentes nos varios ramos que passam por êste ponto.

A jacobiana da rede das curvas I_P , relativas a todos os pontos do plano, é de ordem 6ω ; mas a curva dupla da involução faz parte da jacobiana, porque todas as curvas I_P , que passam por um ponto da curva dupla, teem a mesma tangente, que é a recta principal nesse ponto, visto ser tambêm tangente à curva dupla; logo a jacobiana decompõe-se na curva dupla e numa curva invariante de ordem $8\omega - m$.

50.— Do conhecimento destas curvas resultam algumas propriedades das involuções. Assim é fácil de mostrar que a classe a ordem duma involução não são independentes. Com efeito, a curva I_P relativa a um ponto fundamental F_k tem a ordem

$$2\omega + 1 - k \ge 0;$$

ora, se F_k é o ponto fundamental de ordem mais elevada, pelo segundo teorema do n.º 18, vem

$$(20) m \leq 6 \omega + 2,$$

onde o sinal inferior se refere apenas às quatro involuções com pontos fundamentais equimúltiplos, indicadas no mesmo número.

Esta expressão dá, portanto, um limite superior para a ordem duma involução de que se conheça a classe. 51. — Outras propriedades da curva dupla. A curva dupla é uma curva invariante; logo devem ter logar as relações (18) e (19) relativas ás curvas invariantes, que tomam a forma

e
$$\sum_{k} \delta_{k} k = (m-1) \delta = (m-1) (m-2 \omega)$$

$$\delta_{k} + \sum_{l} \delta_{l} \alpha_{lk} = k \delta = k (m-2 \omega).$$

Basta recordar a definição de curva dupla da involução (n.º 26) para notar mediatamente que a tangente a esta curva num ponto de intersecção com qualquer curva I_P, passa pelo ponto P. Logo a classe da curva dupla é dada pelo número de pontos de intersecção, distintos dos pontos fundamentais, dessa curva com qualquer curva I_P:

$$D = \delta (2 \omega + 1) - \sum_{k} \delta_{k} (k - \delta_{k})$$

$$= (2 \omega - m + 2) (m - 2 \omega) + \sum_{k} \delta_{k}^{2}$$

$$= \delta (2 - \delta) + \sum_{k} \delta_{k}^{2},$$

atendendo à primeira expressão dêste número.

Atendendo aos valores de D, p_D e p_I , tem-se a seguinte relação descoberta por CAPORALI:

$$D+p_D+p_I=m.$$

52. — Pontos duplos isolados. Sejam A e B dois pontos não conjugados, I_A e I_B as curvas isólogas respectivas; estas curvas encontram-se em $(2\omega+1)^2$ pontos, dos quais conhecemos alguns a priori: os ω pares de pontos conjugados que existem sôbre a recta A B, pelos quais passam

manifestamente as duas curvas; os pontos fundamentais da involução, que se devem contar por

$$\sum_{k} (k - \delta_k)^2 + \sum_{k} (\alpha_{kk} - \delta)$$

intersecções; pelas expressões (9) e pelas do número anterior, podemos dar a esta a forma

$$(m-1)(4\omega-m+1)+\sum_{k}\delta_{k}(\delta_{k}+1)+\sum_{k}\alpha_{kk}$$

ou

$$(m-1)(m-2\delta+1)+\sum_{k}\delta_{k}(\delta_{k}+1)+\sum_{k}\alpha_{kk}.$$

Qualquer dos restantes pontos de intersecção, que designamos por M, deve ter o seu conjugado M' simultâneamente sôbre A M e B M; e, como não pode estar sôbre A B, porque já contamos todos os pontos de intersecção das duas curvas sôbre esta recta, deve M' coincidir com M; os restantes pontos de intersecção são pontos duplos isolados da involução; ora estas curvas passam por todos os pontos duplos (n.º 48); por conseguinte a expressão

$$4 \omega^{2} + 6 \omega - 4 m \omega + m^{2} - 2 m + 2 - \sum_{k} \delta_{k} (\delta_{k} - 1) - \sum_{k} \alpha_{kk}$$

dá o número exacto de pontos duplos isolados da involução.

53. — São importantes os casos particulares seguintes: Se a curva dupla não contiver pontos múltiplos fora dos pontos fundamentais, o número de pontos duplos isolados é

$$m+2p_0-\sum_k\alpha_{kk}$$

onde po é o género dessa curva.

Se a involução não contêm curva dupla, o que só pode acontecer quando fôr m=2, a involução contêm quatro pontos duplos isolados. A involução é então aquela de que Steiner deu um processo sintético de construção muito simples e elegante. Considera duas cónicas no plano e faz corresponder a cada ponto P a intersecção P' das suas polares em relação a essas cónicas; os vértices do triângulo polar comum às duas cónicas são os pontos fundamentais e os lados opostos as linhas fundamentais respectivas; os pontos de intersecção das duas cónicas são os quatro pontos duplos isolados, que a fórmula indica; o sistema fundamental é, portanto, constituido pelo triângulo diagonal do quadrângulo formado pelos pontos duplos isolados. As curvas IP são cúbicas duma rede que tem por pontos bases os três pontos fundamentais e os quatro pontos duplos isolados (1).

54. — TEOREMA. Uma involução, que tem invariante uma rede de rectas, é uma homologia harmónica.

Com efeito, a rede de rectas é constituida por todas as rectas do plano e a única involução em que rectas tem por conjugadas rectas é a homologia harmónica.

Teorema. — Uma involução, que tem invariante um feixe de rectas, é uma involução de Jonquières.

Uma recta genérica r do plano encontra um raio do feixe invariante num só ponto P; a curva conjugada C_r

⁽¹) Se as cónicas são circulos não concêntricos, dois dos pontos duplos isolados são os pontos circulares do plano e um dos pontos fundamentais é o ponto no infinito da recta—sempre real—que une os pontos de intersecção a distância finita dos dois circulos; as curvas I_P são portanto cúbicas circulares com a sua assintota paralela a essa recta.

deve, portanto, encontrar o raio do mesmo feixe conjugado daquele num só ponto variável, o ponto P' conjugado de P.

Logo as curvas C^m conjugadas das rectas do plano devem ter no centro do feixe invariante um ponto múltiplo, fundamental parainvo a lução, de ordem m-1; a involução é, pois, de Jonquières e o seu centro coıncide precisamente com o centro do feixe.

§ II.º — Métodos de construção de involuções

55. — Em qualquer involução existe sempre uma rede de eurvas invariantes, cuja jacobiana é tambêm invariante; por dois pontos não conjugados passa uma só curva da rede; mas, sendo os pontos conjugados, passam por êles as ∞^1 curvas dum feixe. Por outras palavras: por um ponto P do plano passam as curvas dum feixe contido na rede, as quais passam ainda pelo ponto P conjugado daquele.

Esta propriedade fornece um processo de construir o conjugado dum ponto dado, conhecida uma rede de curvas invariantes; basta fazer passar pelo ponto dado duas curvas da rede, porque a ulterior intersecção destas curvas fora dos pontos bases, é o ponto conjugado.

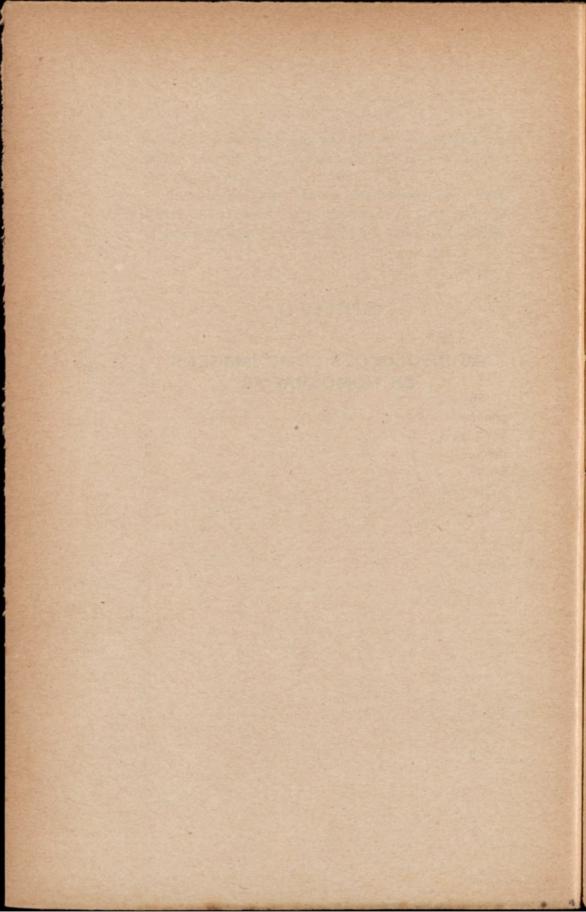
Consideremos agora dois feixes de curvas invariantes, distintos, podendo no entanto ter alguns pontos bases comuns; por cada ponto P do plano passa uma curva de cada feixe, as quais passam tambêm pelo seu conjugado P'. Assim temos outro processo de construir o ponto conjugado dum ponto dado.

Estes dois processos foram aproveitados por Caporali para a construção das involuções de 1.ª classe, servindo-se da rede das curvas I_P , que são cúbicas; o problema simplificava-se, porque o número de involuções é limitado pela relação $m \leq 6 \omega + 2$ (n.º 50).

Outros geómetras (Bertini, Martinetti, etc.) estenderam êste processo até às involuções de 5.ª classe, mas as dificuldades que surgem tornam-se quàsi insuperáveis.

CAPÍTULO IV

AS INVOLUÇÕES COMO IMAGENS DE HOMOGRAFIAS



CAPÍTULO IV

As involuções como imagens de homografias

§ 12.º — As involuções cremonianas no plano e as homografias involutivas do espaço

56. — No capítulo anterior mostrámos como a correspondência entre as curvas dum sistema linear ∞^r de curvas planas, irredutível e invariante relativamente a uma involução do grupo cremoniano no plano, pode comparar-se a uma homografia de caracter involutivo entre os pontos dum espaço de r dimensões E_r . Atendendo à dualidade no espaço E_r , podemos fazer corresponder projectivamente às curvas dum sistema linear ∞^r (r>2), não os pontos, mas os hiperplanos E_{r-1} dêsse espaço. É suficiente, para êste fim, fazer corresponder a r+2 curvas do sistema, tais que qualquer grupo de r+1 delas não faça parte dum sistema ∞^{r-4} , a r+2 hiperplanos dêsse espaço, tais que qualquer grupo de r+1 deles não faça parte duma estrêla de espécie r-1, isto é, não tenha um ponto comum.

Servindo-nos desta nova representação dum sistema linear ∞^r invariante, poderiamos obter por dualidade os teoremas que enunciámos no n.º 38. É todavia noutro sentido que orientamos esta observação.

57. — Como nunca teremos ensejo de aplicar esta teoria com toda a generalidade, expô-la hemos no caso mais simples de um sistema de três dimensões, indicando depois resumidamente os resultados gerais.

Consideremos então um sistema linear | Cⁿ |, três vezes infinito, de grau N, irredutível, completo ou incompleto e podendo ter pontos bases não ordinários, invariante relativamente a uma involução cremoniana, e estabeleçamos uma correspondência projectiva entre as suas curvas e os planos do espaço, para o que é suficiente fazer corresponder a cinco curvas do sistema, tais que quarquer grupo de quatro delas não faça parte duma rede, cinco planos, tais que qualquer grupo de quatro dêles não faça parte duma estrêla, isto é, não tenha um ponto comum.

Nesta doutrina é essencial a distinção entre sistemas lineares invariantes, sem que todas as suas curvas o sejam, e sistemas lineares de curvas invariantes.

Admitindo por enquanto, que nem todas as curvas do sistema invariante são invariantes, por um ponto P do plano π da involução passam as curvas duma rede contida no sistema proposto; os planos correspondentes a estas curvas formam uma estrêla, isto é, teem um ponto comum P_{σ} .

Quando o ponto P descrever o plano π , o ponto P_o descreverá uma superfície S do espaço.

Entre os pontos desta superfície e os do plano π há, portanto, uma correspondência bi-unívoca, de modo que podemos tomar indistintamente S como *imagem* de π , ou π como *imagem* de S. A superfície chama-se *racional*, homaloide ou unicursal, em virtude desta propriedade.

Como um ponto P sôbre uma curva do sistema proposto determina uma rede, que contêm essa curva, o ponto P_o de S imagem de P existe no plano homólogo dessa curva. Logo as curvas do referido sistema são imagens de secções planas da superfície S.

Duas curvas genéricas do sistema encontram-se em N pontos variáveis (fora dos pontos bases), sendo N o seu grau; logo a recta comum aos planos homólogos dessas curvas intercepta a superfície em N pontos; esta terá portanto a ordem N.

Por um ponto base de ordem s do sistema passam s ramos da imagem de cada secção plana da superfície. Logo a êsse ponto corresponde sôbre S uma curva de ordem s. Se o ponto base é ordinário, a curva correspondente é irredutível, e existe uma correspondência bi-unívoca entre as direcções por êsse ponto e os pontos dessa curva.

Por outra parte, a involução determina entre as curvas do sistema uma correspondência que tem por imagem uma homografia involutiva (homologia harmónica ou homografia bi-axial harmónica) entre os planos, e portanto entre os pontos do espaço. Ora, as curvas do sistema que passam por um ponto P de π, e cujos planos correspondentes formam uma estrêla com o centro num ponto Po de S, teem por conjugadas as curvas do mesmo sistema, que passam pelo conjugado P' daquele ponto, e cujos planos correspondentes formam uma estrêla com o centro noutro ponto P', de S, correspondente a P, na homografia do espaço, a que nos referimos, há pouco. Logo os pontos de S são conjugados dois a dois nessa homografia, de modo que um par desses pontos, Po e P'o, tem por imagem um e um só par de pontos P e P' conjugados na involução cremoniana de π. A própria superfície S transforma-se em si mesma.

Resumimos estas propriedades no seguinte:

Teorema. — Se estabelecemos uma correspondência pro-

jectiva entre as curvas dum sistema linear três vezes infinito, — irredutível e do grau N, invariante em relação a uma involução, sem que todas as suas curvas o sejam —, e os planos do espaço, obtemos uma homografia involutiva que deixa invariável uma superficie racional S de ordem N, cujos pontos teem por imagens os pontos do plano da involução, e cujas secções planas teem por imagens as curvas do sistema.

A própria involução pode considerar-se imagem duma homografia involutiva entre os pontos dessa superfície. Daqui resulta que, dos diferentes processos de representação bi-unívoca sôbre um plano duma superfície racional, entre cujos pontos esteja estabelecida uma homografia involutiva, proveem diferentes involuções cremonianas nesse plano.

58. — Suponhamos agora um sistema linear três vezes infinito, irredutível, constituido por curvas invariantes. Como a curva genérica é formada por pares de pontos conjugados, as curvas, que passam por um ponto genérico do plano, passam tambêm pelo seu conjugado, e o sistema é composto com a involução — empregando a terminologia adoptada no estudo dos sistemas lineares — e o seu grau é evidentemente um número par N = 2 σ.

Posto isto, estabeleçamos uma correspondência entre as suas curvas e os planos do espaço. Em virtude do que acabamos de expor, por cada par de pontos conjugados P e P' da involução passam as curvas duma rede contida nesse sistema, às quais correspondem os planos duma estrêla, com o centro num ponto P_{ϕ} .

Assim fazemos corresponder a cada par de pontos conjugados na involução um ponto no espaço. O logar dêstes pontos é uma superfície S. Empregando o processo anterior reconhece-se que as curvas do sistema são as imagens das secções planas da superfície, e que esta tem a ordem $\frac{N}{2}$.

Atendendo a estas propriedades, diremos que S representa a involução mediante o sistema dado. Entre os pontos do plano π da involução e os da superfície há, portanto, uma correspondência (1, 2), pela qual a cada ponto de π corresponde um e um só ponto de S e a cada ponto de S um par de pontos de π, conjugados na involução. Podemos, todavia evitar a distinção entre êste modo de representar a involução e o que expuzemos anteriormente, isto é, ter ainda uma correspondência bi-unívoca, imaginando a superfície S contada duas vezes. É claro que, neste caso, a homografia do espaço seria a própria identidade.

Em resumo:

Teorema. — Se estabelecermos uma correspondência projectiva entre as curvas dum sistema linear três vezes infinito, — irredutível e do grau N, constituido por curvas invariantes relativamente a uma involução —, e os planos do espaço, obtemos uma superfície S de ordem $\frac{N}{2}$, cujos pontos teem por imagem os pares de pontos conjugados da involução, e cujas secções planas teem por imagem as curvas do sistema.

Toda a curva ou sistema linear de curvas sôbre S tem por imagem respectivamente uma curva ou um sistema linear de curvas invariantes.

O confronto desta notável propriedade das involuções com a própria definição, apresentada no n.º 13 dêste trabalho, sugere a ideia de empregar uma linguagem convencional, adequada aos nossos hábitos, consistindo em chamar ponto a cado par de elementos conjugados da

involução, e formar com êles uma superfície abstracta representativa da involução.

59. — Se o sistema é redutível e se compõe duma parte variavel irredutível que descreve um sistema ∞³ (n.º 2, a), em qualquer dos casos anteriores a involução pode representar-se por uma superfície mediante êsse sistema irredutível, e basta ajuntar depois a cada secção plana de superfície uma curva sôbre a mesma superfície, imagem da curva fixa do sistema primitivo, para ter a imagem duma curva dêste sistema.

No caso do sistema se decompôr nas curvas dum feixe (n.º 2, b), é manifesto que a doutrina anterior não pode aplicar-se.

60. — Era fácil generalisar a um sistema de qualquer número de dimensões a doutrina exposta nos números anteriores. Seguindo par a par a marcha dos n.ºs 57 e 58, chegaríamos aos seguintes teoremas, que contêem os anteriores como corolários.

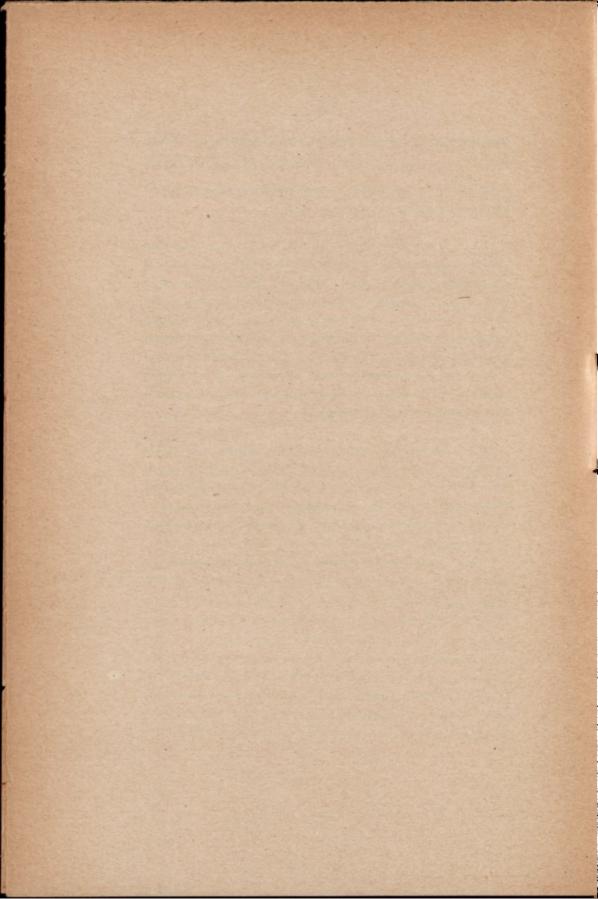
Teorema I. — Se estabelecermos uma correspondência projectiva entre as curvas dum sistema linear ∞^r (r>2), — irredutivel e de grau N, invariante relativamente a uma involução, sem que todas as suas curvas o sejam —, e os hiperplanos dum espaço linear E_r , obtemos uma homografia involutiva neste espaço, que deixa invariável uma superfície S de ordem N, cujos pontos teem por imagens os pontos do plano da involução, e cujas secções hiperplanas teem por imagens as curvas do sistema.

Teorema II. — Se estabelecermos uma correspondência projectiva entre as curvas dum sistema linear ∞^r (r>2) — irredutível e de grau N, constituido por curvas invariantes relativamente a uma involução —, e os hiperplanos

dum espaço linear E_r , obtemos uma superficie S de ordem $\frac{N}{2}$, cujos pontos teem por imagem os pares de pontos conjugados da involução, e cujas secções planas teem por imagens as curvas do sistema.

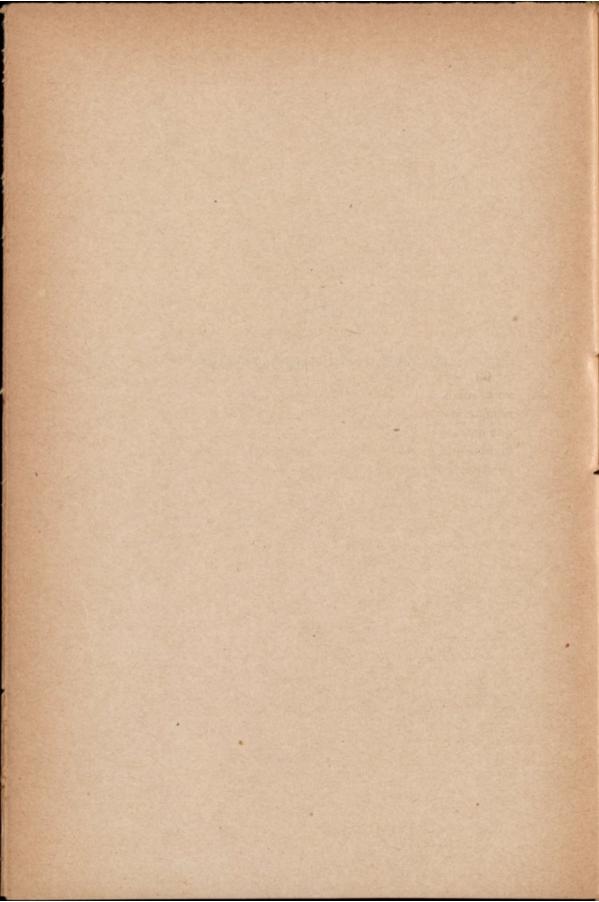
- 61. Como o capítulo III nos habilitou a construir sistemas lineares invariantes nas condições daqueles a que temos recorrido neste capítulo, reconhecemos que esta teoria se aplica a todas as involuções do grupo cremoniano no plano. Por outras palavras, é sempre lícito considerar qualquer involução como imagem duma homografia involutiva entre os pontos duma superfície conveniente, ou como imagem duma superfície. No próximo capítulo indicaremos as superfícies mais simples, aptas a representar todas as involuções.
- 62. Racionalidade das involuções planas. Se todas as curvas duma rede são invariantes e estabelecermos uma correspondência projectiva entre as suas curvas e as rectas dum plano E₂, procedendo como anteriormente, podemos representar cada par de pontos conjugados da involução como imagem dum ponto dêsse plano.

Como qualquer involução do grupo cremoniano no plano contêm sempre redes de curvas invariantes (§ 9.°), esta propriedade estende-se a todas elas e traduz a sua racionalidade.



CAPÍTULO V

OS TIPOS DE INVOLUÇÕES



CAPÍTULO V

Os tipos de involuções

§ 13.º — Involuções equivalentes

63. — Se estabelecermos uma correspondência bi-unívoca entre os pontos do plano duma involução do grupo
cremoniano e os pontos doutro plano, é fácil reconhecer
que entre os pontos do novo plano fica estabelecida uma
involução da mesma natureza, na qual são conjugados os
pontos correspondentes a dois pontos conjugados na primeira.

Com efeito, retomando o calculo simbólico introduzido no n.º 1, e designando por I a transformação pela qual se passa dum ponto do plano π da primeira involução para o seu conjugado, temos, por definição,

$I^2 \equiv 1;$

se designarmos por T a transformação bi-racional que faz corresponder aos pontos de π os do novo plano π' , a transformação que faz passar dum ponto de π' para o seu correspondente é evidentemente

 $I' \equiv T^{-1}IT$,

donde

$$I^{\prime 2} \equiv (T^{-1}IT)(T^{-1}IT) \equiv T^{-1}I^{2}T \equiv T^{-1}T \equiv 1;$$

como I' não pode ser a identidade, por isso que a dois pontos distintos de π correspondem dois pontos distintos de π' , I' representará uma involução.

As principais relações que ligam as duas involuções I e I' são as seguintes:

- a) dois pontos conjugados teem por correspondentes dois pontos conjugados;
- b) os elementos duplos transformam-se em elementos duplos;
- c) duas curvas conjugadas transformam-se em duas curvas conjugadas do mesmo género;
- d) dois sistemas lineares conjugados transformam-se em dois sistemas lineares conjugados do mesmo número de dimensões, género e grau;
- e) uma curva invariante transforma-se numa curva invariante do mesmo género;
- f) um sistema linear invariante transforma se num sistema linear invariante com o mesmo número de dimensões, género e grau.

Esta notável propriedade das involuções fornece-nos um processo de deduzir duma involução dada tantas involuções quantas quizermos. Diremos equivalentes todas as involuções que se podem deduzir por êste processo umas das outras.

64. — Teorema. São equivalentes as involuções que são imagens da mesma homografia involutiva entre os pontos duma superficie racional, mediante diferentes processos de representação.

Sejam π e π' os planos de duas involuções imagens da mesma homografia involutiva entre os pontos duma superfície S. Entre os pontos de π e os de S e entre os pontos de π' e os de S há correspondências bi-unívocas; daqui resulta que entre os pontos de π e os de π' há uma correspondência da mesma natureza. Logo as involuções de π e π' são equivalentes.

É natural reunir numa mesma classe todas as involuções equivalentes e tomar entre elas a mais simples, isto é, a de menor ordem, como *tipo* irredutível.

O assunto dêste capítulo consta da investigação dêsses tipos. Para êste estudo, é indispensável o conhecimento dalgumas propriedades das curvas algébricas planas, que indicamos no parágrafo seguinte.

§ 14.º — Algumas propriedades dos sistemas lineares de curvas algébricas planas

65. — Consideremos um sistema linear completo e irredutível, de r dimensões, género p, grau N e superabundância σ , tendo ν pontos bases de ordem $s_1, s_2, \ldots s_{\nu}$.

Podemos supor, sem inconveniente para as aplicações que fazemos desta doutrina, que os pontos bases são ordinários.

Sejam s_1 , s_2 e s_3 as ordens de multiplicidade dos três pontos bases do sistema de ordem mais elevada. Se submetermos o plano do sistema a uma transformação quadrática, tendo os seus pontos fundamentais naqueles pontos bases do sistema, obtem-se, como transformado dêste, um novo sistema com as mesmas dimensões, o mesmo género e o mesmo grau e a ordem $2n - (s_1 + s_2 + s_3)$. É claro que a ordem do novo sistema só será inferior à do pro-

posto, quando a soma das ordens dos três pontos indicados fôr maior do que n. Procuremos as condições em que isto acontece.

Das relações (7), a que o sistema obedece, deduz-se, passando todos os termos para o primeiro membro e subtraindo da primeira a segunda multiplicada por s₃,

$$\sum_{i=1}^{N} (s_i - s_3) s_i - n^2 + 3 n s_3 + 2 (p-1) s_3 + (1 - s_3) N = 0.$$

Se $s_1 + s_2 + s_3$ não é maior do que n e é precisamente $s_1 + s_2 + s_3 + \varepsilon = n$, sendo ε um número inteiro e positivo ou zero, podemos dar à relação anterior a seguinte forma

$$\sum_{i=1}^{\nu} (s_{i} - s_{3}) s_{i} - [\varepsilon^{2} + 2 \varepsilon (s_{1} + s_{2} + s_{3}) + 3 \varepsilon s_{3}] + 2 s_{3}^{2} - 2s_{1} s_{2} + 2 (p - 1) s_{3} + (1 - s_{3}) N = 0.$$

Mas a expressão encerrada entre colchetes não pode ser negativa senão quando fôr $s_1+s_2+s_3>n$. Logo o sistema pode reduzir-se a outro de ordem inferior, mediante uma transformação quadrática, quando fôr

(a)
$$\sum_{4}^{\nu} (s_i - s_3) s_i + 2 s_3^2 - 2 s_1 s_2 + 2 (p-1) s_3 + (1-s_3) N < 0$$
, ou, a fortiori,

(b)
$$2(p-1)s_3+(1-s_3)N<0.$$

66. Teorema I. — Um feixe de curvas unicursais pode reduzir-se a um feixe de rectas, por uma transformação cremoniana.

Neste caso é r=1, p=0, N=0. Introduzindo êstes valores em (b), esta desigualdade é satisfeita.

Logo o feixe pode reduzir-se a outro de ordem inferior

e do mesmo género; aplicando sucessivas transformações quadráticas chegar-se há a um feixe de curvas de ordem 1, isto é, a um feixe de rectas. Como o produto de transformações quadráticas é ainda uma transformação cremoniana, o teorema é verdadeiro.

Teorema II. — Uma rede de curvas unicursais pode reduzir-se às rectas do plano, por uma transformação cremiana.

Os valores r=2, p=0, s=1 introduzidos em (b), verificam-na, de modo que, procedendo como no caso anterior, chegar-se há a uma rede de curvas de ordem um, isto é, ao sistema formado pelas rectas do plano.

TEOREMA III. — Um feixe de curvas elípticas pode reduzir-se, mediante uma transformação cremoniana, a um feixe de curvas de ordem 3 s com nove pontos bases de ordem s.

Introduzindo os valores r=1, p=1 e N=0 em (a) reconhece-se que o sistema é redutível, excepto quando fôr $s_3^2-s_1s_2=0$ e $s_i-s_3=0$, $(i=4,\ldots,\nu)$, isto é, quando todos os pontos forem equimúltiplos.

Neste caso, as relações (7) tomam a forma

$$v s^2 = n^2$$
 $v s = 3 n$

donde, àlêm duma solução sem significado geométrico, se deduz n=3 s e v=9, como se queria mostrar.

Teorema IV. — Uma rede de curvas elípticas pode reduzir-se mediante uma transformação cremoniana, a uma rede de cúbicas com sete pontos bases simples.

Introduzindo em (a) os valores r=2, p=1, N=2, reconhece-se que o sistema poderá reduzir se a outro de ordem inferior, excepto quando fôr $s_i=1$ e portanto tambêm simples os pontos bases restantes.

Neste caso, as relações (7) tomam a forma

 $v = n^2 - 2$ v = 3n - 2

que, àlêm duma solução incompatível com a natureza do problema, tem a solução n=3 e v=7, como se queria mostrar.

§ 15.º — Investigação dos tipos

67. — Vamos proceder à investigação das involuções, das quais podem ser deduzidas todas as outras, ainda mesmo no caso de haver pontos fundamentais infinitamente próximos.

Indicámos no capítulo III vários métodos de obter sistemas lineares irredutíveis e invariantes em relação a qualquer involução.

Podemos, sem perda de generalidade supor que os sistemas de que falamos teem os pontos bases distintos.

Com efeito, no caso contrário bastaria transformar convenientemente o seu plano noutro para obter um sistema nessas condições (n.º 12); simultâneamente a involução seria substituida por outra equivalente, o que nada importa para o fim em vista — a investigação dos tipos.

Do mesmo modo, podemos, sem inconveniente, substituir qualquer sistema invariante por outro mais simples, mediante uma transformação cremoniana.

Consideremos então qualquer sistema linear irredutível e invariante relativamente a uma involução.

Se êsse sistema fôr de ordem superior a três ou de género superior a um, procedemos à formação dos sistemas adjuntos sucessivos de ordem n-3, n-6, ..., os quais são tambêm invariantes; esta série será interrompida,

logo que cheguemos a um sistema de ordem $n \ge 3$, ou de género $p \ge 1$, ou redutível.

Neste último caso, se o sistema se decompõe nas curvas dum feixe necessáriamente invariante, êste, sendo um sistema completo e regular deve ser formado de curvas unicursais, em virtude de (6), e estamos reduzidos a um caso já indicado; se o sistema se decompõe numa curva fixa e noutra variável formando um sistema irredutível necessáriamente invariante, procederemos com êle como no caso ordinário, pondo de parte a curva fixa.

Logo qualquer involução contêm sempre como invariante um sistema irredutível de ordem $n \le 3$, ou género $p \ge 1$.

- 68. Analisemos detalhadamente a natureza dêstes sistemas.
- p=0. Se a involução contêm um feixe de curvas unicursais invariante, a mesma transformação que reduz êste a um feixe de rectas (n.º 66, I) muda a involução noutra equivalente, que terá como invariante êsse feixe de rectas.

Se a involução contiver uma rede de curvas unicursais, poderá substituir-se, pelo mesmo processo por uma involução equivalente, tendo como invariante o sistema formado pelas rectas do plano (n.º 66, II).

Se o sistema invariante tiver mais de duas dimensões, conterá tambêm uma rede, o que nos reduz ao caso anterior.

p=1. Utilisando o mesmo método, podemos substituir uma involução com um feixe de curvas elípticas por uma equivalente tendo invariante um feixe de curvas de ordem 3 s com 9 pontos bases de ordem s (n.º 66, III); a mesma involução conterá como invariante um feixe de cúbicas com os mesmos pontos bases.

Se a involução contêm uma rede de curvas elípticas

invariante, é equivalente a uma involução tendo invariante uma rede de cúbicas com sete pontos bases simples (n.º 66, IV).

Se o sistema tem mais de duas dimensões, êste conterá uma rede invariante, e ficaremos reduzidos ao caso anterior.

- n=1. A involução terá invariante um feixe de rectas ou o sistema formado pelas rectas do plano.
- n=2. Como as cónicas são curvas de género zero, êste caso já está tratado.
- n=3. Quer as cúbicas do sistema sejam unicursais, quer sejam de género um, este caso não oferece tambêm novidade.

Em resumo:

Teorema. — Qualquer involução do grupo cremoniano admite ou é equivalente a uma involução que admite como invariante:

- a) o sistema formado pelas rectas do plano; ou
- b) um feixe de rectas; ou
- c) um sistema de cúbicas com pontos bases simples e distintos.
- 69. Em virtude dos teoremas dos n.ºs 53, as involuções que obedecem às condições a) e b) do número anterior são respectivamente a homologia harmónica e as involuções de Jonquières.

Por outra parte, a relação

$$\sum_{1}^{\nu} k = 3 (m-1)$$

que deve verificar-se pelo facto dum sistema de cúbicas ser invariante (n.º 34), é a reprodução da segunda das expressões (9). Logo todos os pontos fundamentais da

involução, no caso e), estão sôbre pontos bases dêsse sistema.

Como um feixe de cúbicas tem apenas oito pontos bases independentes, ficamos reduzidos a tratar de involuções que não teem mais de oito pontos. Ora as formulas (9) mostram que as involuções com três pontos fundamentais são quadráticas, comparáveis a involuções de Jonquières.

Com quatro pontos não há involução alguma.

Com einco pontos há uma involução cúbica de Jonquières ($\alpha_1 = 4$, $\alpha_2 = 1$).

Consideremos o caso de seis pontos.

As cúbicas que passam simplesmente por êles formam, como se viu, um sistema ∞^3 invariante, de grau três e género um. Pomos naturalmente de parte o caso dos seis pontos formarem um hexágono de Pascal ou três estarem em linha recta, porque o sistema seria redutível.

Pelo n.º 39, as curvas dêsse sistema não podem ser todas invariantes, de modo que, se estabelecermos uma correspondência projectiva entre as curvas dêste sistema e os planos do espaço, a involução pode considerar-se imagem duma homografia involutiva entre os pontos duma superfície racional de 3.ª ordem S3, cujas secções planas teem por imagens as cúbicas do sistema. Esta superfície contêm vinte e sete rectas correspondentes aos seis pontos bases do sistema, às quinze rectas que unem êsses pontos dois a dois e às seis cónicas determinadas por cada grupo de cinco deles.

Se a homogrofia é uma homologia harmónica, como os pontos da superfície devem ser conjugados dois a dois e alinhados com o centro de homologia Po, deverá cada recta que passa por êste ponto encontrar a superfície apenas em dois pontos móveis; logo Po pertence à super-

ficie. Por outro lado, os planos, que passam por Po, interceptam a superfície segundo cúbicas de género 1, que são manifestamente invariantes na homologia harmónica do seu plano, com o centro em Po e o eixo na intersecção do mesmo com o plano da homologia harmónica do espaço. Essas cúbicas devem ter por pontos unidos os três pontos de intersecção com esse eixo, e são ao mesmo tempo os pontos de contacto das tangentes às mesmas curvas conduzidas por Po. Ora, da teoria das cúbicas, sabe-se que êste ponto será de inflexão (1). Logo o ponto Po será de inflexão para todas as cúbicas planas da superfície que passam por êsse ponto, resultantes da secção da superfície pelos planos da estrela com êsse centro. Este ponto deverá estar sôbre uma das vinte e sete rectas da superfície, a qual se transformará portanto em si mesma.

Se a homografia é a bi-axial harmónica, qualquer recta que se apoia nos dois eixos deve encontrar a superfície em dois pontos que deve separar harmónicamente os seus pontos de apoio. Para que isto possa ter logar é indispensável que um dos eixos da homografia coincida com uma das vinte e sete rectas da superfície.

Reconhece-se, portanto, que em ambos os casos, uma das rectas da superfície se transforma em si mesma. Daqui resulta que, se representarmos a superfície sôbre um plano de modo que um dos seis pontos bases seja a imagem dessa recta, êsse ponto será duplo e não fundamental para a nova involução, equivalente à proposta (n.º 64). Esta, contendo menos de seis pontos, não fornece tipo algum.

⁽¹⁾ V. Salmon: A treatise on the higher plane curves, n.º 170, 3.* edição.

TEOREMA. — Qualquer involução do grupo cremoniano é equivalente a uma das seguintes:

- a) homologia harmónica;
- b) involuções de Jonquières;
- c) involuções com sete ou oito pontos fundamentais distintos tendo como invariante um sistema irredutível de cúbicas com êsses pontos bases.
- 70. Involuções de Jonquières. A involução tem como invariante um feixe de rectas, podendo todas as rectas serem invariantes ou não.

No primeiro caso, é evidente que todos os pares de pontos conjugados hão de estar alinhados com o ponto F_{m-4} , e a involução é perspectiva; ao ponto F_{m-4} chama-se centro da involução e designamo-lo por O.

Uma involução perspectiva é de classe zero. Com efeito, uma recta arbitrária do plano tem por conjugada uma curva de ordem m que a encontra em m pontos, cada um dos quais, devendo ter o conjugado sôbre a recta, e, ao mesmo tempo, alinhado com O, só pode ser duplo. O logar dêstes é uma curva dupla de ordem m. Esta propriedade é inversa da demonstrada no n.º 26, d.

Cada raio do feixe O encontra a curva dupla em dois pontos, que separam harmónicamente qualquer par de pontos conjugados existentes nesse raio. Se um raio do feixe é tangente à curva dupla num ponto fora de O, a involução sôbre êsse raio é parabólica e todos os seus pontos teem por conjugado o referido ponto de contacto; logo êste ponto é um dos pontos fundamentais simples e a tangente a recta fundamental respectiva.

Se a curva dupla não contêm singularidades fora de O, isto é, se tem o género m-2, por uma bem conhecida fórmula de PLÜCKER, a classe é igual a 4m-6, e pelo

ponto O, àlêm das tangentes aos n-2 ramos que por êle passam, podemos conduzir outras 2m-2 tangentes, cujos pontos de contacto são todos os pontos fundamentais simples; as tangentes são as respectivas rectas fundamentais.

Por outro lado qualquer raio r do feixe O, encontra a curva dupla em dois pontos P e Q e a primeira polar dessa curva relativamente a O num ponto M, tal que $\frac{PO}{PM} + \frac{QO}{QM} = 0$, donde (P Q O M) = -1, por onde se reconhece que M é conjugado de O na involução. Obrigando r a descrever o feixe O, reconhece-se que a curva fundamental de ordem m-1 relativa a O é a primeira polar indicada.

71. -- Suponhamos agora que a curva dupla tem singularidades fora de O. É evidente que êsses pontos só podem ser duplos. Se a curva fôr de género p < m-2, ainda podemos conduzir por O 2p+2 tangentes à curva dupla, cujos pontos de contacto são pontos fundamentais simples. Cada um dos m-p-2 pontos duplos deve contar-se por dois pontos fundamentais simples infinitamente próximos. Se submetermos o plano π da involução a uma transformação quadrática com os pontos fundamentais em O, num dos pontos duplos da curva dupla e em qualquer dos 2p+2 pontos simples, é facil de calcular a ordem da involução equivalente de π'. Com efeito, a uma recta de π' corresponde uma cónica de π circunscrita aos três pontos fundamentais; esta cónica tem por conjugada na involução dêste plano uma curva de ordem m passando com m-2 ramos por O, e simplesmente pelos pontos duplos da curva dupla e pontos fundamentais simples. Esta curva transforma-se em π' numa curva de ordem m-1 com um ponto múltiplo de ordem m-2, correspondente a recta donde partimos; como a curva dupla se transforma numa curva dupla em π' de ordem m-1 com

um ponto de ordem m-2 e m-p-3 pontos duplos, a involução de π' é da natureza da de π com a ordem diminuida duma unidade.

Operando repetidas vezes, chegar-se há a uma involução em que a curva dupla não tem pontos duplos; logo êste caso é redutível ao primeiro.

No entanto, se é p=0, a involução quadrática, a que se chega, pode reduzir-se á homologia harmónica, mediante uma transformação quadrática com os pontos fundamentais nos dois pontos fundamentais da involução situados na cónica dupla e noutro ponto qualquer da mesma curva.

Se a curva dupla fôr redutível, como cada raio do feixe O deve encontrá-la em dois pontos, não pode uma das partes ser um raio dêsse feixe; a curva só pode decompor-se em duas partes de ordens δ_1 e δ_2 ($\delta_1 + \delta_2 = m$) passando por O respectivamente com $\delta_1 - 1$ e $\delta_2 - 1$ ramos.

Estas curvas encontram-se ainda em $\delta_1+\delta_2-1$ pontos fora de O, que podemos identificar com os pontos duplos do caso anterior.

Procedendo análogamente, chegamos a êstes resultados: se $\delta_1 = \delta_2$ chega-se à homologia harmónica; se $\delta_1 \neq \delta_2$ chega-se a uma involução perspectiva com uma curva dupla de ordem $\delta_1 - \delta_2$ com um ponto múltiplo de ordem $\delta_1 - \delta_2 - 1$ em O, caso que vamos estudar.

Se a curva dupla tem em O um ponto múltiplo de ordem m-1, sôbre cada raio do feixe com centro em O, há uma involução em que um dos pontos duplos é êsse mesmo ponto.

Dos pontos simples m-1 são infinitamente próximos de O e sôbre a curva dupla; os restantes não podem estar sôbre esta curva, porque das suas intersecções com uma curva conjugada duma recta arbitrária do plano deve

haver m variáveis; ora com os m-1 mencionados temos $m^2-[(m-1)^2+(m-1)]=m$. Mas, como devem ser infinitamente proximos de O, as curvas correspondentes às rectas do plano teem nesse ponto contactos de ordem s_1+1 , s_2+1 , ... tais que $s_1+s_2+\ldots=m-1$. Submetendo o plano a uma transformação quadrática tal que um ponto fundamental seja O, outro o ponto infinitamente próximo sôbre a tangente a um daqueles ramos das curvas correspondentes às rectas do plano, e o terceiro em qualquer ponto da curva dupla, a involução equivalente que se obtêm é de ordem inferior e da mesma natureza. Repetindo a construção chega-se à homologia harmónica.

- 72. Se a involução não é perspectiva, o feixe invariante tem apenas dois raios invariantes, podendo dar-se os casos de serem ambos constituidos por pontos duplos, um apenas, ou nenhum.
- a) Se os dois raios invariantes são constituidos por pontos duplos, transformando quadráticamente o plano noutro, pondo um ponto fundamental em O, outro num ponto fundamental simples e outro em qualquer ponto duma daquelas rectas, obtem-se uma involução equivalente nas condições de b).
- b) Se um dos raios invariantes é constituido por pontos duplos, transformemos o plano, pondo um ponto fundamentado em O, outro num ponto fundamental simples e outro num ponto da recta dupla; obtemos uma involução nas condições de c).
- c) Resta analisar o caso de as duas rectas invariantes não serem duplas. Os pontos conjugados sôbre estas rectas formam involuções que conterão quatro pontos duplos isolados da involução cremoniana considerada. Transformando o plano de modo que o triângulo fundamental

tenha num vértice em O e os outros em dois pontos fundamentais simples, tais que a recta fundamental relativa a qualquer não passe pelo outro, a involução muda numa equivalente de ordem inferior; assim se chegará à involução quadrática a que nos referimos no n.º 53, da qual se passa para a homologia harmónica, pondo dois pontos fundamentais em dois dos pontos fundamentais da involução e o terceiro num ponto duplo.

Como as transformações quadráticas indicadas são exequiveis em todos os casos, vemos que as involuções de *Jonquières* podem deduzir-se da homologia harmónica, excepto quando teem uma curva dupla não unicursal, porque se reduzem ao caso indicado no n.º 70.

73. Tipo com sete pontos fundamentais. Pomos de parte os casos de três pontos estarem em linha recta ou de seis formarem um hexágono de Pascal, porque seria redutível a rêde de cúbicas com êsses pontos bases. Designando por $k_1, k_2, \ldots k_7$ as suas ordens, temos

$$\sum_{l=1}^{7} k_l = 3 \, m - 3;$$

por outro lado para as cúbicas determinadas pelos mesmos pontos com um ponto duplo num dêles, será

$$k_i + \sum_{l=1}^{7} k_l \le 3 m$$
 $(i = 1, 2, ... 7).$

Destas relações deduz-se $m \le 8$ e $k_i \le 3$, sendo i = 1, 2,... 7, isto é a involução não pode ter ordem superior a oito, nem pontos fundamentais de ordem superior a três.

Se um dos pontos fôr simples, por exemplo $k_7 = 1$, e a recta fundamental respectiva passar por êle, a involução é doutro tipo, em virtude do n.º 44. Se a recta é a que une

os pontos fundamentais de ordem k_2 e k_3 , transformando o plano noutro por uma transformação quadrática, com os pontos fundamentais nestes e noutro de ordem k_1 obtem-se uma involução equivalente, cuja ordem

$$m' = m - 4k_4 + \alpha_{14} + 2\alpha_{12} + 2\alpha_{13}$$

se deduz seguindo um raciocínio bem conhecido. Como é $k_1 > \alpha_{11}$ e $k_1 \ge \alpha_{12} + \alpha_{13}$, vem $m' < m - k_1$, e a involução é redutível.

Se a involução tem um ponto fundamental duplo (k₇=2) e a cónica correspondente passa por êle, atendendo ao n.º 44, a involução tem um feixe invariante de curvas unicursais, caso já estudado.

Se ela passa pelos pontos de ordem $k_1, k_2, \dots k_5$ temos

$$\sum_{l=1}^{5} \alpha_{il} = 2 k \quad (i = 1, 2, ... 5),$$

de modo que transformando o plano e pondo os pontos fundamentais nos três primeiros dêstes pontos, a ordem da involução equivalente que se obtêm é

$$m' = \alpha_{44} + \alpha_{55} + 2\alpha_{45}$$
;

mas $\alpha_{44} + \alpha_{45} \leq k_4$ e $\alpha_{55} + \alpha_{45} \leq k_5$; logo $m' \leq k_4 + k_5$. Se $k_4 + k_5$ fôsse igual a m, a recta que unia êsses pontos era fundamental e estariamos no caso anterior; logo é sempre m' < m.

Resta considerar o caso m=8, $k_i=3$. As curvas fundamentais serão cúbicas, que devem ser determinadas pelos pontos fundamentais; logo devem passar por todos e ter um ponto duplo num dêles.

Se êste ponto não fôsse o correspondente, a involução

conteria um feixe invariante de curvas unicursais (n.º 44) e seria redutível.

Resta tomar como tipo a involução de 8.º ordem com sete pontos fundamentais triplos, tendo cada curva fundamental um ponto duplo no respectivo ponto fundamental.

A jacobiana da rêde de cúbicas é uma curva de 6.ª ordem com pontos duplos nos sete pontos fundamentais e é a curva dupla da involução.

Esta involução foi descoberta por Geiser, a propósito dum problêma diferente (1). Designá-la hemos pelo seu nome.

74. Tipo com oito pontos fundamentais. Esta involução conterá como invariante o sistema de curvas de 6.ª ordem com êsses pontos bases duplos. Êstes pontos, àlêm de distintos, não podem estar três em linha recta, seis não podem formar um hexágono de Pascal, nem passar por êles uma cúbica com um ponto duplo num dêles, aliás o sistêma seria redutível, o que nos levaria aos casos anteriores.

Designando por $k_1, k_2, \ldots k_8$ as ordens dêsses pontos temos

$$\sum_{i=1}^{8} 2 k_i = 3 m - 3;$$

para as curvas de 6.ª ordem tendo a mais um ponto triplo num dêles ter-se ha

$$k_i + \sum_{l=1}^{8} 2 k_l \le 3 m$$
 (i=1, 2, ... 8).

⁽¹⁾ Geiser, Uber zwei geometrische Probleme, J. de Crelle T. 67 – p. 78 a 89.

Destas relações vem $m \le 17$ e $k_i \le 6$ sendo i = 1, 2... 8. Se a involução contêm um ponto fundamental simples ou duplo, é redutível, em virtude do que dissemos no número anterior.

Se têm um ponto triplo (k₈ = 3), e a cúbica correspondente passa por êle, a involução não oferece interesse em virtude do n.º 44.

Suponhamos, então, que passa pelos outros sete pontos, com um ponto duplo no de ordem k_4 temos

$$k_1 + \sum_{l=2}^{7} k_l = 3 \ m$$
 e $\alpha_{1i} + \sum_{l=4}^{7} \alpha_{il} = 3 \ k_i$ $(i = 1, 2, 3)$

A cónica determinada pelos pontos de ordem k_4 , k_5 , k_5 , k_6 , k_7 , não é fundamental, aliás estariamos no caso anterior; se designarmos por ε a ordem da curva conjugada e por ε , o número de ramos com que esta passa pelo ponto de ordem k_i , temos

$$\Sigma k_l = 2m - \varepsilon$$
 ($l = 1, 4, 5, 6, 7$)
 $\Sigma \alpha_{il} = 2k_i - \varepsilon_i$ ($l = 1, 4, 5, 6, 7; i = 1, 2, 3$)

Destas relações vem

$$k_1 + k_2 + k_3 = m + \varepsilon$$
 e $\sum_{l=2}^{3} \alpha_{il} = k_i - \varepsilon_i$ $(i = 1, 2, 3)$

Transformando o plano noutro, com os pontos fundamentais nos pontos de ordem k_1 , k_2 , k_3 vem uma involução de ordem $m'=m-(3 \epsilon-\epsilon_1-\epsilon_2-\epsilon_3)< m$, que é inferior.

Se a involução contivesse um ponto fundamental de 4.ª ordem, a curva correspondente não podia ter um ponto triplo porque não ficaria determinada pelos oito pontos (n.º 21); logo deve ter tres pontos duplos e cinco

simples; quer tenha no ponto correspondente um ponto simples ou duplo, estamos reduzidos a casos estudados, em virtude do n.º 44. O mesmo, se houvesse um ponto quíntuplo.

Resta o caso de serem sêxtuplos todos os pontos fundamentais e portanto m=17. As curvas fundamentais são curvas de 6.ª ordem com um ponto triplo e sete duplos; o ponto triplo deve estar sôbre o ponto correspondente, aliás teriamos um caso já estudado.

Esta involução constitue um novo tipo, descoberto por Bertini. Designá-la hemos pelo seu nome.

75. A discussão dêste § resume-se no seguinte:

Teorema. — Qualquer involução do grupo cremoniano no plano pode deduzir-se, por meio duma transformação do mesmo grupo, duma das seguintes involuções tipos:

- I) homologia harmónica.
- II) involução perspectiva de Jonquières de ordem mcomuma curva dupla de género m-2.
- III) involução de oitava ordem com sete pontos fundamentais triplos (Geiser).
- IV) involução de décima sétima ordem com oito pontos fundamentais sêxtuplos (BERTINI).
- 76. Ao teorema anterior pode dar-se outra forma baseada no que expuzemos no n.º 57.

O segundo tipo tem como invariante um sistêma ∞ ³ $|\mathbf{C}^m|$ de ordem e grau m, com um ponto base de ordem m-2 no centro da involução, com pontos bases simples sôbre os 2m-2 pontos fundamentais simples e mais m-2 pontos bases simplês em quaisquer pontos duplos da involução. Estabelecendo uma correspondência projectiva entre as suas curvas e os planos do espaço, a involução

pode considerar-se imagem duma homografia involutiva entre os pontos duma superficie Sm. A curva Cm-1 que tem no centro da involução um ponto múltiplo de ordem m-3 e passa simplesmente pelos 3m-4 pontos bases simples de |C m | fica bem determinada. Qualquer curva dêste sistema ∞^3 encontra-a em m-2 pontos variáveis, tais que um determina todos os outros. Com efeito, se dois dêles fôssem arbitrarios, um terceiro (destinado a fixar uma curva de |Cm|) determinaria uma recta conduzida pelo centro da involução, que juntamente com C^{m-1} constituìria a curva do sistema obrigada a passar por êles. Por outras palavras, todas as curvas de | Cm | que passam por um ponto de C^{m-1} , passam ainda por outros m-3, e formam uma rede; os planos homólogos do espaço formam, portanto, uma estrêla com o centro um ponto de S^m , o qual, tendo por imagem m-2 pontos do plano da involução, é um ponto múltiplo desta ordem.

O seu logar é uma recta múltipla de ordem m-2, existente na superficie. Esta não pode conter outra linha múltipla, porque as suas secções planas, tendo por imagens as curvas de género m-2 de $|\mathbf{C}^m|$, devem possuir o mesmo género.

A involução de GEISER tem como invariante um sistêma ∞^6 de curvas de 6.ª ordem, com pontos bases duplos nos seus sete pontos fundamentais; mas as curvas dêste sistêma, que passam simplesmente por três pontos duplos da involução, D_1 , D_2 e D_3 , formam um sistêma ∞^3 de género três e grau cinco, tambêm invariante. Estabelecendo a conhecida correspondência entre as suas curvas e os planos do espaço, obtem-se uma superfície de 5.ª ordem com cincoenta e seis cónicas, correspondentes aos sete pontos fundamentais, às vinte e uma rectas de união dêstes, às vinte uma cónicas determinadas por cinco dêles, e às

sete cúbicas que passam pelos mesmos pontos com um ponto duplo num dêles. Com efeito, qualquer destas linhas é encontrada em dois pontos variáveis pelas curvas do sistêma $\infty^3 \mid C^6 \mid$.

A rede das cúbicas que passam por êsses sete pontos é representada por um sistêma ∞² de curvas de 4.ª ordem e género um sôbre a superfície.

Qualquer das três cúbicas que passam pelos sete pontos fundamentais e por dois dos pontos D, são encontradas pelas C⁶ em dois pontos, um dos quais, apenas, é arbitrário, como se mostraria fácilmente, seguindo um raciocínio idêntico ao de há pouco. Essas curvas serão portanto representadas por três rectas duplas sôbre a superfície.

Como aquelas cúbicas se encontram em três pontos fóra dos pontos bases do sistêma | C⁶|, tais que as curvas dêste, que passam por um dêles, passam necessáriamente pelos outros, os planos homólogos formam uma estrêla, cujo centro deve estar simultâneamente sôbre as rectas duplas. Logo estas são concorrentes.

A superfície não pode conter outras linhas múltiplas, porque as suas secções planas deverão ser de 5.ª ordem e género três.

Na involução de Bertini, as curvas de 9.ª ordem, com pontos triplos nos oito pontos fundamentais, constituem um sistema linear ∞6 invoriante. As curvas dêste sistêma, que passam com dois ramos por um ponto duplo D da involução, formam nm sistêma linear ∞³ de género 3 e gráu 5. Procedendo como nos casos anteriores, obtêm-se uma superfície de 5.ª ordem.

À cúbica que passa pelos pontos fundamentais e por D corresponde uma recta dupla sôbre a superfície.

Logo:

Teorema. — Qualquer involução do grupo cremoniano

no plano pode considerar-se imagem duma homografia involutiva entre os pontos dum plano, ou duma superficie de ordem m com uma recta múltipla de ordem m — 2, ou duma superficie de 5.ª ordem com tres rectas duplas concorrentes ou duma superficie de 5.ª ordem com uma recta dupla.

INDICE

	Pag.
Prefácio	XI
Capítulo I Noções preliminares:	
§ 1.º—Definições	3
§ 2.º — Sistemas lineares de curvas algébricas planas .	5
§ 3.º — Transformações cremonianas no plano	11
Capítulo II. — Teoria das involuções:	
§ 4.° - Generalidades. Sistema fundamental	33
§ 5.º — Propriedades das curvas fundamentais	40
§ 6.º — Elementos duplos e classe duma involução	48
§ 7.° — Curvas e sistemas lineares conjugados	51
Capitulo III. — Curvas e sistemas lineares invariantes:	
§ 8.º — Definições e propriedades	58
§ 9.º — Construção de curvas e sistemas lineares inva-	
riantes	64
§ 10.º — Aplicação do estudo das curvas e sistemas inva-	
riantes à investigação dalgumas proprieda-	
des das involuções	71
§ 11.º — Métodos de construção de involuções	
Capítulo IV As involuções como imagens de homogra-	
FIAS:	
§ 12.º — As involuções cremonianas no plano e as hono-	
grafias involutivas do espaço	83
Capítulo V. — Os tipos de involuções:	
§ 13.º — Involuções equivalentes	93
§ 14.º—Algumas propriedades dos sistemas lineares de	
curvas algébricas planas	95
§ 15.º — Investigação dos tipos	98

