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Abstract 

Data likelihood of fire detection is the probability of the observed detection outcome given the state of the 

fire spread model. We derive fire detection likelihood of satellite data as a function of the fire arrival time on 

the model grid. The data likelihood is constructed by a combination of the burn model, the logistic regression 

of the active fires detections, and the Gaussian distribution of the geolocation error. The use of the data 

likelihood is then demonstrated by an estimation of the ignition point of a wildland fire by the maximization 

of the likelihood of MODIS and VIIRS data over multiple possible ignition points. 

 

Keywords: Active Fires, MODIS, VIIRS, Coupled Fire-Atmosphere Modeling, Remote Sensing, Maximum Likelihood, Data 
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Satellite-based sensors are a commonly used data source because of their large spatial coverage, 

but the mismatch of scales, geolocation errors, the probabilistic character of the fire detection, and 

missing data present a challenge. A practical resolution for fire behavior models is given by fuel data 

availability, typically about 30m, while the resolution of satellite-based fire detections is from 375m 

to 2km and up. Therefore, initializing a model directly by igniting entire detection squares results in 

blocky, fragmented fire shape. Furthermore, in coupled fire-atmosphere models, such ignitions 

generally result in numerical instabilities induced by the sudden heat release from the ignited pixel, as 

well fire state inconsistent with the atmospheric state at the ignition time. In the presented method, we 

use satellite data to improve the fire modelling in a statistical sense. The basic tool we use is data 

likelihood, which is defined as the probability of the fire detection outcome given the state of the fire-

spread model.  

Data likelihood is one of the techniques to evaluate a model state relative to data, and a basic 

ingredient of many data-driven simulation methods. Data likelihood is used e.g., in data assimilation 

to update importance weights in particle filters, or as a term in an objective function of an optimization 

method in maximum likelihood or maximum aposteriori probability (MAP) estimates.  

Other, less formal pragmatic fitness functions are often used for model evaluation, see a survey in 

Filippi et al. (2013). Approaches used in wildland fire spread include evaluation of a model solution 

by the difference of burned area e.g.,  Brun et al. (2017), who update the solution by genetic algorithms; 

least squares, or, equivalently, Gaussian data likelihood of perimeter position with update by sequential 

Monte Carlo (e.g., Srivas et al. 2017), or by the ensemble Kalman filter (EnKF) in Rochoux et al. 

(2014); Gaussian likelihood of sensor data (e.g., Gu 2018; Xue et al. 2012); and the size of a spatial 

deformation needed to match two fires, with the spatial deformation mapping extending the state in 
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the EnKF (Beezley and Mandel, 2008; Mandel et al. 2009). See also a survey of data assimilation for 

wildland fire spread modeling in Gollner et al. (2015, Sect. 4). 

Approaches to wildland fire modeling using satellite data include periodic reinitialization from new 

detections (Coen and Schroeder 2013; Sá et al. 2014) and identification of ignition as the first active 

fires detection within a reported perimeter (Benali et al. 2016). However, because of the missing data, 

the statistical uncertainty of detection, the geolocation uncertainty, and the mismatch of scales between 

the fire model and the satellite sensor, direct use of satellite data at fuel map scale is of limited value 

and the data is better suitable to improve models in a statistical sense. Fire behavior models run on a 

mesh given by fuel data availability, typically with about 30m resolution and aligned with geographic 

coordinates and with time step of the order of seconds. The satellite fire detections are commonly used 

due the large spatial coverage, but the gap of scales and data errors present a challenge. The resolution 

of satellite-based sensors is much coarser, from 375m once a day for VIIRS (Schroeder et al. 2014), 

1.1km twice a day for MODIS (Giglio et al. 2016), aligned with flight coordinates, to 2km every 5 

minutes for GOES-16 (Koltunov et al. 2016). Geolocation error can be significant, e.g., 1.5km at 3 

for VIIRS (Sei, 2011). Pixels may be missing for various reasons such as clouds. While consumer-

grade data provide only fire detection pixels, science-grade data make an important distinction between 

missing data and absence of fire detections.  

Spatial statistical interpolation of the first detection time by kriging to obtain a continuous fire 

arrival time field was proposed by Veraverbeke et al. (2014). Sá  et al. (2017) proposed a measure of 

spatial discrepancy between fire spread simulation and satellite data. The probability of fire detection 

in a sensor pixel, given the state of the fire and the properties of the surface in the pixel, was estimated 

in a validation study (Schroeder et al., 2008) by logistic regression. Mandel et al. (2014b) suggested 

a form of data likelihood for satellite active fires detection in a pixel and used it for data assimilation 

by a MAP estimate.  The form of the data likelihood from Mandel et al. (2014b) was further motivated 

in Mandel et al. (2016b) by substituting the fire heat flux into the logistic regression from Schroeder 

et al. (2008), which explained the behavior of the likelihood function after the fire arrival time. This 

likelihood function was used to find a maximum likelihood estimate of an ignition point in Mandel et 

al. (2016a). 

In this paper, we build a data likelihood function by adding a geolocation error to the construction 

in Mandel et al. (2016b), which combines a heat release model with logistic regression for the active 

fires detections. For a single pixel, we recover and justify the form of data likelihood function proposed 

in Mandel et al. (2014b, 2016b).  We then demonstrate use of the data likelihood on identifying the 

ignition point on a realistic example. 

We have used WRF-SFIRE (Mandel et al., 2009, 2011, 2014a) in the examples in this paper. WRF-

SFIRE evolved from CAWFE (Clark et al. 2004) and it has been a part of WRF release as WRF-Fire 

since 2011 (Mandel et al. 2011; Coen et al 2013). 

 

 

The state of the fire-spread model is encoded as fire arrival time on a grid of locations of Earth 

surface. The data likelihood is obtained from the fire arrival time by substituting the heat release into 

the logistic sensitivity function and convolution of the result with a Gaussian kernel to account for the 

geolocation error (Figure 1). See Appendix A for mathematical details.  
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(a)                                                                              (b)                                 

 
                                          (c)                                                                             (d)     

Figure 1 - (a) Heat release model with exponential decay. The maximum heat fraction of 1 drops to 1/e in  the 

characteristic time of 2h.  (b) Probability of fire detection as a logistic function of the fraction of maximum heat 

release, with 50% probability of detection at 1% heat fraction, and 0.1% false detection rate. (c) Probability of 

detection as a function of time elapsed since fire arrival, obtained by substituting the heat release fraction from (a) to 

the logistic curve (b). (d) Final log probability of detection from Eq. (7), obtained by convolution of (c) with a 

Gaussian kernel. The fire rate of spread was 1m/s and Gaussian geolocation error was =2000m , equal to a rounded 

sum of the diagonal of a 1.1km pixel plus the standard deviation of 0.5km of the geolocation error from VIIRS 

specifications (Sei, 2011).   

The log likelihood suggested in Mandel et al. (2014b, 2016b) was based on the pragmatic 

consideration  that the probability of detection is close to one for some time after the fire arrival, with 

quadratic tails, and the leading edge is steeper than the trailing edge. Note that the log likelihood curve 

in Figure 1(d) has exactly this type of shape above the transition to the constant nonzero false detection 

rate. 

 

 

 

As a first test of whether the likelihood function can be used to retrieve the ignition location and 

time of a wildfire we made a simple experiment simulating an idealized  fire over flat terrain with 

homogenous fuels and no winds. We picture the progression of the perimeter of such a fire to be 

originating from a point and growing outward like the wave caused by a stone dropped into a pool of 

still water. With T representing the fire arrival time at some particular spatial point (x,y), we model the 

progression of the fire as cone 

 

Working with a spatial domain of 1000 units square, we simulate a fire with ignition point 

(x,y) = (500,500) and ignition time t = 30  with the function 
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We then simulated satellite fire detections at several points along the simulated fire perimeter 

corresponding to the level-curves of the function at time t=300. In a real-world setting, these detections 

may be the first information we have about a fire and in order to achieve the best simulation of it we 

need to have a good estimate of the ignition point. We find this estimate by running many simulations 

of the fire starting at locations and times near those of the satellite detections and then computing the 

log-likelihood of the simulated satellite detections according to equation (6). The largest log-likelihood 

obtained from the set of simulations gives us the best estimate of the location and time of the fire 

ignition. 

 
 (a)                                                                    (b) 

Figure 2 - (a) Simulated fire with no wind and homogenous fuel. The concentric circles represent the fire perimeter at 

various times, increasing from the center outward. The small squares represent simulated satellite fire detections at a 

time concurrent with the time of the fire perimeter which they overlay. (b) Contour map of data log-likelihood for 

simulated fire with ignition time t = 20.  The actual ignition point of the simulated fire was at the point (500,500). 

For this first test, a collection of 500 simulations was made over a 10-by-10 spatial grid at five 

separate times. The data likelihood of each simulation was then computed and the best estimate of the 

time and place of ignition was determined using the likelihood function in equation (5). For the set of 

simulated detections used, the maximum likelihood of all simulations occurred at the correct “true 

ignition point” but at an incorrect ignition time. The “true ignition time” was t = 30, but the estimation 

procedure gave an earlier time t = 20. This is not a surprising result, as an earlier ignition time results 

in fire perimeter containing more of the area encompassed by the simulated fire detection pixels. As 

seen by the shape of the likelihood curve in Figure  (d), areas within and close to the fire perimeter 

have a high probability of detection but areas outside of the perimeter at a similar distance may have 

a very low probability of detection. The earlier ignition time makes for a larger fire, which covers more 

of the detection squares, which leads to a greater data likelihood. 

 

A second test of the data likelihood function to estimate time and place of ignition was made using 

the WRF-SFIRE coupled atmosphere-wildfire model. This system will be used to work with real fire 

data but for this second test, simulated fire data created by the “Hill Experiment” within WRF-SFIRE 

was used. The “Hill Experiment” simulates a fire in a  square region with sides of length 2 km and 

contains a small, dome-shaped hill 100 meters tall situated in its center. A simple atmosphere state, 

with winds blowing from the northeast was used to create the initial conditions of the weather. Like 

the first simple test, a simulated fire was created, this time using the WRF-SFIRE model, and then 

artificial satellite fire detection pixels were created by hand by placing the centers of fire detection 

pixels on top of a particular fire perimeter. For this simulated fire, the ignition point was chosen to be 
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(x,y) = (1400m,1400m) and the ignition time was chosen to be t = 60s. Fire detection pixels were 

placed over the fire perimeter line corresponding to the time t = 400s.  

 

 
 (a)                                                                               (b) 

Figure 3 - (a) Topography, winds, and simulated fire detection pixels of the “Hill Experiment.” The contour lines 

represent a small hill in the center of a simulated fire domain with winds initially blowing from the upper right 

corner. The rectangles within the figure are simulated fire detection pixels. (b) Fire simulation grid and fire 

perimeters of the simulation with largest data likelihood. Fire simulations were started at each of the points on the 

grid in the figure and the data likelihood of each simulation was then calculated. The colored contour lines represent 

the fire perimeters of the simulation with the maximum data likelihood.    

Again, a large number of fire simulations were then run at various locations and times and the data 

likelihood of each was computed to give an estimate of the time and place of the true fire ignition. We 

ran 300 simulations of the fire on with trial ignition points selected on a 10-by-10 spatial grid, at three 

distinct ignition times. The true time and place of ignition was in the exact center of this three-

dimensional grid of the trial ignition points. The likelihood of the data associated with each simulation 

was computed and the maximum value found corresponded to the true ignition time and place. 

 
Figure 4 - Contour map of data log-likelihood for ignition points of the WRF_SFIRE Hill Experiment. In this case, 

the maximum likelihood gives the correct time and location of the fire ignition. 

 

A third experiment was completed using satellite data from both MODIS and VIIRS to estimate the 

time and place of ignition of a real fire. The fire modeled is known as the “Patch Springs Fire” and 

occurred southwest of Salt Lake City, Utah in August, 2013. As with the other cases previously 
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detailed, the time and place of the fire’s ignition was estimated by running an ensemble of WRF-

SFIRE simulations at various times and places with the intent to estimate the ignition point by 

evaluating the data likelihood for each simulation. In this case, 1000 fire simulations were run on a 10-

by-10 spatial grid (Figure 5) at ten different ignition times. The spatial grid resolution was 

approximately 500 meters and the ignition times were spaced two hours apart, with the first ignition 

time occurring at 21:00 UTC on August 10. The data likelihood of each simulation was evaluated 

using satellite data from the first two days of the fire simulation period. 

 

Figure 5 - Satellite fire detections and WRF-

SFIRE simulation locations for the Patch Springs 

Fire of August 2013. The large colored squares 

represent 1 km active fire locations from the 

MODIS satellites during the first two days of the 

fire. The evenly spaced blue points are locations at 

which fire simulations were run in order to 

estimate the time and place of the fire ignition. The 

official estimate of the ignition point lies just 

outside of the grid of simulations and the estimate 

of this location obtained by maximum data 

likelihood lies nearly 3 km to the north. 

 

 

Figure 6 - Contour map of data 

likelihood for simulations of the Patch 

Springs Fire on August 11, 2013. The 

contour lines are drawn from the data 

likelihood of all fires with simulated 

ignition times of 1:00 UTC. The best 

estimate of the fire’s ignition point lies 

just left of center at approximately 

40.37°N, -112.7W. 

With all simulations run and the data likelihood of each evaluated, the estimated time and place of 

ignition was determined to be 40.372°N,-112.659°W at 1:00 UTC on August 11, 2013 (Figure 6). 

Spatially, this estimate differs by nearly 3 km from the official ignition point determined by 

investigators. The estimated time of ignition is within an hour of the official ignition time of 2:00 UTC. 

This fire initially progressed to the northeast but eventually spread southward. It is probable that if that 
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if longer simulations were run and more satellite fire detections showing this southward progression 

of the fire were used then our estimate would be closer to the official fire ignition location. 

 

 

We have derived a physics-motivated likelihood function for active fires satellite detection data, 

and demonstrated its utility on identifying the ignition point of a wildland fire in time and space. The 

new data likelihood can be also useful in data assimilation for fire spread models, e.g., as a  part of the 

objective function in an optimization approach (Farguel Caus et al. 2018). 
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Appendix A 

The probability of MODIS fire detection is estimated in validation studies (Hawbaker et al. 2008; 

Schroeder et al. 2008) by logistic regression as a function of the fire size, or the fraction of the pixel 

actively burning, as 

 

where d = 1 means that a fire was detected and d = 0 that it was not. The constants a and b depend 

on the properties of the fuel and its loading. They are commonly specified in terms of the false 

detection rate 1/(1 + exp(b)) for  F = 0, and the quantity F0.5, defined by 1/(1 + exp(-aF0.5+b))=0.5, 

which determines a as a = b/F0.5.  We consider the quantity F in the logistic regression (1) as a proxy 

for the heat flux h(x) over the pixel at x, and thus use (1) with h(x) in place of F. This view is supported 

by the  facts that the quantity the hardware sensor actually measures is the radiative power (in its 

frequency bands); a more accurate  regression was obtained in Schroeder et al. (2008) by adding as 

another regressor the maximum contiguous area burning, which is essentially a proxy for the fire 

intensity and thus radiative power, which the fine-resolution sensor used for the validation could not 

measure; and 50% probability of VIIRS detection occurs at nearly constant product of fire size and 

black body radiation intensity over a range of fire sizes and fire temperatures, as one can compute from 

Figure 4 in Schroeder et al. (2014).   

The heat flux is modelled from the burn model in WRF-SFIRE (Mandel et al., 2011) as identically 

zero before the fire arrival time T and by a decaying exponential function afterwards, 

 

where Tnow is the time of the satellite imaging (Figure 1(a)). However, because of the geolocation 

error, fire detection in a pixel with nominal coordinates x = (x
1
,x

2
)  is a two-step random process. 

Assume that the geolocation error is a Gaussian random variable in two dimensions with zero mean 

and isotropic standard deviation . Then, the location y = (y
1
, y

2
) that the sensor is actually looking 

at is a random variable with the probability density 
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and the probability of detection is given by the logistic formula (1) with F = h(T(y)), the fire heat 

flux at y, with y sampled following (3). Assuming further that the geolocation error and the fire 

detection outcome are independent random variables, the probability of the detection is then given by 

the probability mixture 

 

The probability of no fire detection (i.e., ground without fire) is the complementary probability, 

 

since 

 

To recover a form of data likelihood similar to that in Mandel et al. (2014b), consider the case of a 
straight fire line propagating in unit normal direction n with rate of spread R. Then,  

 

Substituting T(y) into (4), we see that, in particular, the probability of fire detection at x depends on 

T(x) only. Now take n = (0,1) and x = (0,0), then (6) becomes T(y) = T(0,0) + y1/R,  and we have that 

 

The graph of an example of this likelihood function is shown in Figure 1(d), which is indeed similar 

to the likelihood from Mandel et al. (2014b, 2016b). 

For data assimilation and identification of the ignition point, however, we need likelihood computed 

for the entire satellite image, not just one pixel. First, from (5), we have for both d = 1 and d = 0 that 

 

So suppose we are given a mesh of pixels at nominal locations xi
  = (x1

i, x2
i) and corresponding 

detection data di = 0 or 1, with confidence levels ci between 0 and 1. Confidence level 0 means missing 

data. Assume for simplicity that the detections are independent random variables, thus the detection 

probabilities at individual pixels multiply (and their logarithms add), and discretize the integral in (4) 

by summation over the same mesh. Then, we can approximate the log likelihood of the detection array 

d  = (di ) given the array of fire arrival times T = (T(xj )) by  

 

where wi are normalization constants such that 

 

The data likelihood (9) is used in the examples in Section 3. 
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