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Abstract 

Uncertainty characterisation and validation are critical phases to generate any Essential Climate 

Variable (ECV), and therefore both have been included as key deliverables of the ESA CCI 

programme (Rainer et al 2013). All products generated by the CCI are required to have an associated 

per pixel uncertainty characterisation. This paper describes both the uncertainty characterisation 

framework and the related uncertainty validation exercise of the Fire-CCI project. 
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Burnt Area algorithms broadly consist of a classification into a binary Burnt/Unburnt product. As 

with all remote sensing retrievals these algorithms can be phrased within inverse theory: 

 

Where the outputted burnt area product B is determined by the data d and the burnt area algorithm 

G. Remote sensing measurements contain uncertainty (Poveu and Grainger, 2015). As such the 

relationship above is better described by: 

 

Where ν represents uncertainty in the value of the measurement d. Often the probability distribution 

function of v is assumed normal such that the observation arrives as: 

 

where δ is an estimate of the observation uncertainty. Naturally the uncertainty in the observations 

leads to uncertainty in the retrieval of burnt area. To fully describe this uncertainty requires definitions 

of uncertainty at the relevant scales of the products. Within the ESA CCI programme there is an 

expectation of pixel-level uncertainty information (Rainer et al 2013). Further, the Fire-CCI products 

are also to be provided at a lower resolution Climate Model Grid (CMG) (0.25°). 

 

At the pixel scale we define an appropriate uncertainty characterisation to be the probability that 

the pixel is burnt Pb. Pb then provides a probabilistic confidence that the pixel is burnt given the 

observations. Pb must follow the axiomatic laws of probability, e.g the probability that the pixel is not 

burnt Pu is: 
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The full pixel level uncertainty is then described by a Bernoulli distribution B: 

 

 

At the CMG scale the definition of uncertainty is different. Burnt area at the CMG is classically 

defined as the summation of the number of burnt pixels Nb. However to propagate the uncertainty to 

the CMG we suggest that the CMG burnt area BCMG is better described by a Poisson binomial 

distribution. The Poisson binomial distribution describes the probability of N independent Bernoulli 

distributions. As N grows large the distribution is well described by a normal distribution with mean 

μ and standard deviation δ: 

 

This means that at the CMG scale each grid cell is approximated as a normal random variable which 

encodes the uncertainty in the burnt area. Crucially, all pixels are included in the calculation even if 

they have a low Pb. 

 

 

An uncertainty validation methodology was developed for testing the uncertainty characterisation 

of algorithms within Fire-CCI. The purpose of the validation exercise was to assess the presently 

developed uncertainty characterisations within a framework which provides realistic estimates of the 

true product uncertainties. In this paper we address the validation of uncertainties for two algorithms 

within Fire-CCI. 

 

The two algorithms make an estimate of the per-pixel uncertainty  in different manners. 

Algorithm A estimates  based primarily on a pixel’s distance to the nearest active fire observation. 

While algorithm B defines  based on the distance to the classification boundary between the burnt 

and unburnt classes within the algorithm. 

 

Evidently the true uncertainty Pb is determined by the confidence the algorithm places in the 

detection given the uncertainty in the data. To take account of the uncertainty in the observations, 

algorithms must marginalise over the probability distribution of the observation: 

 

 

However the algorithms presently are unable to perform this integral. Instead a monte-carlo 

framework was developed to approximate this integral. We can derive an estimate of the true Pb for 

an algorithm based on sampling from the data distribution P(d). 

Three test sites were selected, representing three significant pyromes for burnt area: savanna, boreal 

forest and tropical forest (which are shown in figure 1). An estimate of daily surface reflectance for 

each site was provided from the MODIS Collection 6 surface reflectance products (MOD/MYD09).  

To generate each realisation of the reflectance Ri(λ), each recorded measurement from MODIS 

RMODIS(λ) was described by a multivariate normal distribution: 
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where the observation uncertainties are represented by the diagonal covariance matrix 

. Per channel uncertainties  where provided from the MODIS uncertainty 

characterisation (see table 1) (Vermote et al, 2002). 

 
Figure 1 - Location of the selected test sites 

To consider that algorithms were properly representing the uncertainty in P(d), three sets of 

realisations were computed for each site with three different levels of observational noise. To do this, 

the MODIS covariance matrix was scaled by a noise factor c, with the values of 0.5, 1.0, 1.5. As c 

increases, it would be expected that Pb would tend more towards ignorance, as described by Pb values 

approaching 0.5. Both algorithms were run on the N realisations of a remote sensing dataset sampled 

from P(d) for each site. As a result, for a pixel p we have N realisations of the product: 

P = [b, u, u, b, b, u, b, u, u, u, ..] 

where b corresponds to a burnt detection and u and unburnt detection. A good approximation to the 

true algorithm Pb is then a function of the number of burnt draws to unburnt draws. When B is defined 

as a Bernoulli variable, we can estimate the maximum likelihood estimate of Pb from the function: 

 

where B and U is the number of burnt and unburnt outputs respectively. Pb is then simply: 

 

Given the limited number of sample runs, this estimate may be poor (Megill and Pavicic, 2011). 

Instead an adjusted estimate is provided by: 
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where B is the Beta function. Each realisation of  was then aggregated to the grid-scale along 

with the algorithm true Pb as outlined in section 1.2. 

Table 1 - Theoretical per-pixel uncertainty for MODIS channels. From: [3] 

MODIS channel 1 2 3 4 5 6 7 

central λ 645nm  858nm  469nm  555nm  1240nm  1640nm  2130nm 

 

0.004  0.015  0.003  0.004  0.013  0.010  0.006 

 

 

Figure 2 shows an example of the pixel level estimates of Pb from two Fire-CCI algorithms 

compared to the true uncertainty characterisation. Primarily we see that the two algorithms show 

considerably different uncertainty estimates while having similar true uncertainties. Algorithm A 

shows high  for unburnt areas (0.2-0.4) (with a low true Pb). Within the burn scars  is highest 

(typically 0.7-0.9) but still below the true uncertainty for these areas. Algorithm B matches more 

closely to the true uncertainty, especially in areas of low probability. However in the burn scars the 

estimated probabilities are considerably lower than the truth. 

 
Figure 2 - Pixel level estimates of Pb for two Fire-CCI algorithms over the boreal test site. Top) True Pb derived from 

the sampling framework. Bottom) Algorithm estimate of Pb 

Figure 3 shows the resulting CMG estimates of burnt area km2 from two Fire-CCI algorithms. The 

differences in the pixel level uncertainties clearly propagates to the CMG distributions. The over 

estimation of uncertainties in algorithm A leads to a large over estimation in the burnt area. Algorithm 

A also has an increased standard uncertainty relative to the true standard uncertainty given the data. 

Overall algorithm A estimate of burnt area does not match the true distribution well. Estimated 

distribution: µ: 23267km2 δ: 13306km2 vs the sampling-based distribution: µ: 6395km2 δ: 4951km2. 

Algorithm B performs more favourably with a closer estimate to the true distribution as well as the 

true burnt area. However it slightly underestimates the mean due to the under-estimation of  within 
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the burn scars. Algorithm B shows a slight over-estimation in the standard uncertainty but is closer to 

the true standard uncertainty. Estimated distribution: µ: 4050 km2 δ: 2838km2 vs the sampling-based 

distribution: µ: 8195.5km2 δ: 5077km2. 

Figure 4 shows the error in the algorithm uncertainty estimates for the three test sites. Here, the 

error in the uncertainty characterisation is encoded by the difference between the algorithm Pb estimate 

and the true Pb from the sampling. Generally therefore, an accurate uncertainty characterisation occurs 

when this error is near zero. Further, we would expect no biases in this error as a function of the noise 

factor c. Such an outcome indicates that the uncertainty method correctly identifies the magnitude of 

the uncertainty in the observations. A general feature of note is the overall bias in algorithm B towards 

an underestimate of Pb as was seen for the boreal site in figure 2. An encouraging feature for algorithm 

B is that the error in Pb is not a feature of the degree of noise imposed by c. We can see that both the 

bias and distribution of errors in Pb remain consistent across noise levels. This indicates that the 

algorithm provides an estimate of the uncertainty which is not sensitive to the noise sampling of the 

input datasets. Algorithm A shows a larger sensitivity to the noise factor c. In each test site, the 

distribution of errors in Pb is sensitive to the level of noise c. This indicates that the present uncertainty 

characterisation needs to be refined to remove such sensitivity. Further, for algorithm A the biases in 

Pb are inconsistent across the three sites unlike for algorithm B. In the boreal site, the algorithm 

provided Pb is less than the true Pb. However in the tropical and savanna sites, the algorithm Pb is 

larger than the true Pb. This feature indicates that the present uncertainty method needs to be refined 

to be suitable for each biome. 

 
Figure 3 - Error in algorithm estimates of Pb for the two FireCCI algorithms. Pb error is the difference between the 

algorithm  and the estimated true . 

 

 

The described framework represents an initial attempt at producing uncertainty quantified BA 

products at both the pixel and CMG scales. Further a methodology for validating uncertainty estimates 

based on sampling from the data distribution is presented. Results indicate that present uncertainty 

estimates need to agree more closely with the present binary estimates of products. Going forward this 

can be achieved by full uncertainty propagation within algorithms following metrological principles. 

An appropriate best practice framework for uncertainty characterisation is provided by the Guidelines 

for Uncertainty in Measurement (GUM) (IUPAC 2008). Secondly there is a need to consider 

uncertainty within the retrieval algorithm itself. The presented framework details the implications of 

the uncertainty in remote sensing observations and the effect these have on the algorithm performance, 

but the algorithm is here assumed to introduce no uncertainty. 
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