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Abstract 

Live Fuel Moisture Content (LFMC) – the ratio of water mass to the dry mass of live fuel - is a critical 

factor of fire behavior and hazard. This parameter is largely controlled by weather conditions and is affected 

by climate changes. There is therefore an increasing need, to understand its variability, to improve its 

predictability and its impact on fire behavior and activity. This would enhance the development of tools for 

operational fire risk management and wildfire research. Here we compile several recent findings regarding 

these issues, most of them were based on the French LFMC database collected for operational purposes and 

containing more than 20,000 measurement dates during 22 fire seasons on 30 sites and 25 species distributed 

over the French Mediterranean. First we evaluated the predictability of LFMC by fitting linear relationships 

between LFMC and various daily empirical drought indices (Drought Code=DC, Keetch-Byram Drought 

Index=KBDI, Dead Moisture Code=DMC) and a water balance model describing the Relative Water Content 

of the soil (RWC). We found a limited explanatory power of the drought indices based on climate only due 

to large differences between sites and species. This support the view that predictions can be improved by 

accounting for stand and species specific parameters by developing more process-based approaches. The 

RWC model is a first step toward this direction, and can account for stand level parameterization of soil 

properties and leaf area index of the vegetation if data are available. To account for species specific traits 

involved in plant dehydration, we suggest an adaptation of a plant hydraulic model to simulate LFMC 

response to water potential according to plant hydraulic traits. This is promising with regard to the 

development of a fully-mechanistic approach of the prediction of LFMC, which would include the responses 

of both plant and soil. Second, we used an existing dataset reporting shrub fire experiments to investigate the 

response function of fire rate of spread (ROS) to LFMC. We found a very significant effect of LFMC below 

100 %. However, because most LFMC values in the ROS database are higher than those prevailing in the 

French database, large uncertainties in ROS estimation were obtained below LFMC of ca. 70%. Finally, we 

explored the relationship between and fire occurrence using a French database of fire activity and the French 

LFMC database. We found that the response of the fire occurrence of more than 1ha was very similar to the 

response of rate of spread. Our global approach drawing on long-term field LFMC data constitutes an 

important step forward in weaving the mechanistic links between climate, vegetation functioning and fire 

activities.  
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Live Fuel Moisture Content (LFMC) – the ratio of water mass to the dry mass of live fuel - is 

increasingly recognized as a critical factor of fire behavior (Rossa et al. 2016) and hazard (Dennison 

and Moritz 2009; Nolan et al. 2016; Ruffault et al. 2018). This fuel parameter is obviously affected by 

drought and thus climate change, but its dynamic remains poorly understood and predicted.  
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While field measurement remains the reference method for evaluating LFMC, it is generally limited 

for obvious practical constraints. Remote sensing is an appealing alternative to field measurements but 

requires extensive calibration and validation (Yebra et al. 2013). Another widespread approach is the 

use of empirical relationships between meteorological drought indices (Drought Code, Keetch-

ByramDrought Index, etc.) and LFMC (Viegas et al. 2001) (Viegas et al., 2001), which enables 

forecast and projection, since such indices implement simple functions of basic daily weather data 

(temperature, precipitation, etc.).  

A 20,000 multispecies and multisite dataset of LFMC measurements in Mediterranean France over 

20 years has recently been released (referred to as “RH” for “Réseau Hydrique”, Martin-StPaul et al. 

2018). This dataset provides new opportunities to increase knowledge regarding 1) the predictability 

of LFMC through meteorological drought indices and remote sensing products; 2) The basis for a 

mechanistic modelling of LFMC, which could account for both soil and vegetation properties; 3) its 

impact on fire activity, through comparisons between LFMC dynamics and actual fire activity.  

In the present study, we address these three points, with the exception of remote sensing 

predictability, which has already been evaluated on this dataset (Fan et al. 2018). The basis In order to 

evaluate the impact of LFMC on fire behavior, we also use the shrub fire experiment dataset collected 

in Anderson et al. (2015) to assess the response of the fire rate of spread (ROS) to LFMC. 

 

 

 

We evaluated the predictability of LFMC by fitting linear relationships between LFMC and various 

empirical drought indices (Drought Code=DC, Keetch-Byram Drought Index=KBDI, Dead Moisture 

Code=DMC) and a process-based water balance model describing the Relative Water Content of the 

soil (RWC). Climatic data required (including temperature, rainfall, radiation, relative humidity) were 

extracted for each site from the French reanalysis SAFRAN. The species were classified in two groups 

according to their seasonal variability: high and low responding species. We found that the 

performance was similar for all drought indices, with RMSE on the order of 18% and determination 

coefficients on the order of 0.3 (Figure 1). As pointed out in Yebra et al. (2013), such an error is too 

large for operational and research purposes, as the ignition probability corresponding to this error 

might range from low to high levels (from 19-60%). Most of the factor of variability were due to site 

and species differences (Ruffault et al. under review) 

 

Those results suggest that empirical drought indices should be used with caution for LFMC 

prediction and that such indices could probably be improved, using more mechanistic approaches that 

could account for site other than climate and species properties (Ruffault et al. under review). RWC is 

a first step toward this direction, but requires adequate parameterization of soil properties and leaf area 

index of the vegetation. We are currently consolidating a large database of soil properties and leaf area 

index for the different RH site where LFMC is currently measured in the French Mediterranean. This 

will help to elucidate to what extent soil and LAI contribute to defining LFMC dynamics during 

drought. 
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Figure 1 - Linear models between live fuel moisture content (LFMC) and different drought indices (DC, DMC, KDBI 

and RWCH) for two different groups of species: High responding (HR) and Low responding (LR) species. LFMC was 

measured during the fire season on 20 different sites for the period from 2000 to 2013.  

 

 

We found that the predictability of LFMC including the low and high responding strategies- were 

linked to certain physiological traits related to plant hydraulic and plant regulation of water potential. 

This suggests that the physiology of water transport in plants, namely plant hydraulic, can provide 

insights regarding LFMC response to drought. In this context, we suggest a mechanistic framework to 

derive LFMC from plant water potential (, MPa). This framework is based on the plant hydraulic 

model SurEau presented in (Martin-StPaul et al. 2017). SurEau simulates two processes involved in 

plant desiccation: (i) the dehydration of the living cells (symplastic tissue) giving the relative water 

content of the symplast (RWCs) and (ii) the cavitation of the xylem (apoplastic tissue) giving the 

relative water content of the apoplast (RWCa). Both values can then be used to predict LFMC, if the 

specific dry mass content and the apoplastic fraction of the tissue considered are known. Fig. 2 

illustrates a typical dynamic of symplastic and apoplastic RWC as well as LFMC as a function of plant 

water potential, for a set of species-specific parameters indicated in the legend. Further details about 

the equations and parameters can be found in the description of the SurEau model in Martin-StPaul et 

al (2017). 
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Figure 2 - Theoretical response of LFMC to plant water potential simulated with SurEau describing the dynamic of 

relative water content in both the symplastic compartment (RWCs) and the apoplastic compartment (RWCa). The 

dynamic of cavitation is shown in black. For these simulations we used a cavitation resistance (taken as the water 

potential causing 50% cavitation) of -7 MPa, a turgor loss point of -3.5MPa, a leaf dry matter content of 500mg/g, 

and an apoplastic fraction of 0.4. Further details about the equations and parameters can be found in the description 

of the SurEau model in Martin-StPaul et al (2017). 

 

 

In this subsection, we use a shrub fire experiment dataset (Anderson et al. 2015) to fit a model for 

rate of spread (ROS) as a function of LFMC. The model is the following generalized additive model 

(GAM, Hastie et al. 2009): 

 

 
 

(1) 

 

where s is smooth function. The model fit, using a “log” link and assuming a gamma distribution 

of the residuals, is described in details in Pimont et al. (2018a). 

The response of ROS to LFMC is a multiplicative function showing a strong increase of fire 

behavior when LFMC is below 100%, but negligible above it (Fig. 2). The green, orange and red 

arrows show the different ROS increases (in %) associated with the three thresholds used by French 

fire prevention and fighting managers. Our analysis shows that these thresholds effectively correspond 

to strong increase in fire behavior. However, the range of the confidence intervals strongly increases 

below 67 %, as the experimental fires were hold in LFMC conditions above 67% (between 67 and 256 

%). 

𝑅𝑂𝑆 = 𝑎𝑈𝑏𝑒−𝑐𝐷𝐹𝑀𝐶𝐻𝑑𝑠(𝐿𝐹𝑀𝐶) 
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Figure 3 - Response of fire rate of spread as a function of LFMC, derived from Eq. 1, fitted over the fire experiments 

described in Anderson et al. (2015). A strong increase in ROS is observed below 100%, even if the confidence 

intervals strongly increase below 67% because of the lack of experimental data in this range. 

 

Comparing the range of LFMC in fire experiments and in the RH dataset confirms this strong 

discrepancy between LFMC in fire experiments and the conditions prevailing during the actual fire 

season. 

 

 

We used the LFMC dataset and a French database reporting fire activity in order to evaluate how 

LFMC relates to fire occurrence, based on fires that occurred at less than 10 km to the LFMC 

measurement sites. In order to study how fire activity relates to LFMC, we first used the approach of 

Dennison and Moritz (2009), but found that the method was very sensitive to the fire frequency 

distribution (Pimont et al. 2018b). Instead, we used a GAM model to study the response function for 

fire activity to LFMC in an approach derived from (Preisler et al. 2004). We first fitted the number of 

fires larger than 1ha (N>1ha) as a function of LFMC, using a quasi Poisson family and a “log” link. 

 

 
 (2) 

 

where s is smooth function, Sf is the forest area in 10 km buffer zone around the LFMC 

measurement sites (in which fires were observed) and “Site” a factor to account for an eventual effect 

of the LFMC sampling location on fire density. Figure 4a represents the multiplicative response to 

LFMC of the number of fire larger than 1 ha, in a similar manner than Fig. 3. Interestingly, the shape 

of this response function, as well as its magnitude was very similar to the one reported for fire behavior 

on a completely different dataset and at a different scale. 

 

N>1ha = Sfs LFMC Site 
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Figure 4 - (a) Response of the number of fires larger than 1ha as a function of LFMC, derived from Eq. 2, fitted over 

the RH dataset. A strong increase in fire number is observed below 100%, exhibiting a response function very similar 

to the one of the ROS (Fig. 2). (b) Response of the number of fires larger than 1ha as a function of LFMC, as in Fig 

3. The shape of the curve is sharper than for the >1ha fires and still decay below 100%. 

We applied the same approach to the number of fires larger than 100ha (N>100ha). However, the 

dataset is to sparse in this context to use the quasi binomial distribution and to account for the site 

effect. The model fit which assumes the basic binomial distribution (which does not account for over 

dispersion of the fire numbers, and hence might underestimate the confidence intervals) is shown in 

Fig. 4b.  

The response function was much sharper than the one of the fire behavior and the number of fires 

larger than 1ha, which can be considered as an evidence of a stronger effect of LFMC on large fires. 

Also the effect of LFMC did not saturate below 100%, suggesting that the probability to get such a 

large fire is much lower in humid conditions than in standard “LFMC=100%” conditions.  

 

 

This work presents new insights regarding the variability, predictability, physiological drivers and 

impact of LFMC on fire hazard based on extensive analysis applied to a large LFMC dataset. First, the 

variability between sites and species considerably limit the accuracy of drought indices. Comparison 

with calibration of remote sensing products suggest that the accuracy is relatively similar (Fan et al., 

2018).  

 Improvements of LFMC modelling is nevertheless possible by accounting for site specific 

parameters in water balance models (e.g. soil water capacity and leaf area index) and species traits 

driving desiccation dynamic through plant hydraulic model (cavitation resistance, turgor loss). Our 

analyses also suggest that LFMC modelling can be significantly improved in the future on the basis of 

ecophysiological models (Ruffault et al. under review) which account for soil and vegetation 

properties, which is in line with a recent publication (Jolly and Johnson 2018). Here we suggested the 

use of the SurEau model for plant hydraulics (Martin-StPaul et al., 2017) to simulate LFMC with a 

mechanistic approach including traits. A major advantage of this approach is that is can be readily 

applied to a large variety of species thanks to the emergence of large databases of pressure volume 

curves and vulnerability curve to cavitation (Bartlett et al. 2012; Choat et al. 2012; Martin-StPaul et 

al. 2017). Ongoing research aims at coupling this approach to a water budget model (Ruffault et al. 

2013) and to validate the approach over LFMC measurements in situ, thanks to the RH database and 

the ongoing data acquisition of complementary data (LAI, soil depth, weather data). However, there 

are still important limitations and research needs both in terms of data and model structure. For 
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instance, the prediction of plant water potential and leaf shedding due to drought is not straightforward 

(Choat et al. 2018). Furthermore, accounting for phenology and decoupling the effects of water status 

from seasonal dry matter changes would likely strengthen these studies (Jolly et al. 2014). 

The reanalyze of the empirical shrub fire dataset previously collected shows that the effect of LFMC 

on fire behavior is much stronger than previously estimated (Anderson et al. 2015), especially in the 

range below 100%. Unfortunately, there is still a lack of empirical data in dry conditions corresponding 

to high and extreme fire sensitivity (Fig. 2), so that the confidence intervals are very large in this range. 

This argues for field experiments closer to the actual fire conditions, even if such experiments would 

be clearly very demanding for economic and safety reasons. 

The comparison between the RH database and the fire database shows that fire occurrence is 

strongly dependent on LFMC. Fires of more than 1ha exhibit a response to LFMC which is very similar 

to fire spread, which would suggest that fires can reach 1 ha only when they spread fast enough to be 

caught out by fire fighters. Larger fires are even more strongly determined by LFMC suggesting a fire 

frequency on the order of 5 times higher when LFMC is shifted from 100 % to 43%. It would be even 

10 times higher when shifting from 120%. 

Most of the large-scale evidences of link between LFMC and fire activities were obtained through 

remote sensing and drought indices, which have shown to be limited in their ability to predict LFMC 

(Ruffault et al. 2018). Our on-going study of the influence of LFMC on fire behavior and activity from 

a local scale results in a better understanding of the role of LFMC. 
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