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Abstract 

Laboratory and field experiments focused on pyrolysis and ignition coupled with sufficient description of 

fuel characteristics and physics-based modeling are being used to improve our understanding of combustion 

processes in mixed (heterogeneous) fuel beds managed with prescribed fire in the southern United States. 

Previous pyrolysis work has typically used ground-up samples, thus eliminating any effects caused by 

moisture content, fuel particle shape, or heating mode. We are measuring pyrolysis at bench, laboratory and 

field-scale using intact fuels from living plants. Pyrolysis products being measured include light gases and 

tars using off-line and real-time spectroscopic instruments. 3-D fuel description, heat transfer to the fuels, 

and air flow around the fuels are being determined using a variety of intrusive and nonintrusive methods. The 

ability of high fidelity physics-based FDS, WFDS, and GPYRO3D to reproduce experimental results and to 

study conditions outside the range of the experimental data is being examined. This presentation will present 

an overview of the project and the questions being addressed. Preliminary results from initial attempts to 

measure pyrolysis at field-scale and results from early modeling of pyrolysis of live leaves using coupled 

GPYRO3D and FDS models are presented. 
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Wildland fire is an important component of many North American ecosystems and has been used 

by humans to accomplish various objectives for several thousand years. Prescribed burning in the 

southern United States is an important tool used by the Department of Defense and other land managers 

to accomplish several objectives including hazardous fuel reduction, wildlife habitat management, 

critical training area maintenance, ecological forestry and infrastructure protection. Vegetation is 

heterogeneous unlike the homogeneous fuel beds assumed by current operational fire spread models. 

These models do not contain fundamental descriptions of chemical reactions and heat transfer 

processes necessary to predict fire spread and energy release needed for process-based fire effects 

models. To improve prescribed fire application, an improved understanding is needed of the 

fundamental processes related to pyrolysis and ignition in heterogeneous fuel beds. The objective of 

this project is to address several fundamental questions to improve our understanding and modeling 

capability of fire propagation in natural fuel beds including 1) detailed description of pyrolysis and the 

evolution of its products for a greater variety of southern fuels than is currently known, 2) how 

convective and radiative heat transfer from flames to live fuel particles influences pyrolysis and 

ignition at laboratory and field scales, and 3) more detailed insight into pyrolysis, combustion and heat 

transfer processes in wildland fire spread through the use of high-fidelity physics-based models. The 

questions are being tested with data derived from three activities: 1) characterization of pyrolysis 

products by measurement for a variety of live and dead foliar fuel particles in laboratory and small-

scale field experiments, 2) determination of the effects of convection and radiation heat transfer on 

pyrolysis, and 3) performance of high-fidelity physics-based modeling of pyrolysis and ignition for 

bench-scale, wind tunnel and small-scale field experiments. This paper describes the overall project. 

 

 

Laboratory and field experiments focused on pyrolysis and ignition coupled with sufficient 

description of fuel characteristics and physics-based modeling are being used to improve our 

understanding of combustion processes in mixed (heterogeneous) fuel beds managed with prescribed 

fire on DoD installations. Previous pyrolysis work has typically used ground-up samples, thus 

eliminating any effects caused by moisture content, fuel particle shape, or heating mode. Thermal 

gravimetric analysis (TGA) coupled with gas chromatography-mass spectrometry (GC-MS) and 

evolved gas analysis (EGA) have been used for decades to describe the composition and energy content 

of pyrolysis products. We are measuring pyrolysis at three scales – bench-scale measurements at BYU 

and the Forest Products Laboratory (FPL), laboratory burn-scale in a wind tunnel at RFL, and small 

field-scale burns (1600 m2) at Fort Jackson in South Carolina using intact fuels from living plants in 

natural fuelbeds beneath southern pine forests. 14 plant species were selected (Table 7). One of the 

dominant shrub species in the pine stands at Ft. Jackson is sparkleberry. Since this plant is deciduous, 

it causes a significant change to prescribed fire behavior when its foliage is present during the growing 

season. Sparkleberry was chosen to be the live plant species to link bench-scale measurements to field-

scale measurements. 
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Table 1 - Southern plant species used in pyrolysis experiments. 

Common name Scientific name1 Experiment2 

Wiregrass Aristida stricta Michx. B 

Little bluestem  Schizachyrium scoparium (Michx.) Nash B 

Inkberry Ilex glabra (L.) A. Gray B,W 

Yaupon Ilex vomitoria Aiton ‘Schelling Dwarf’ B 

Fetterbush Lyonia lucida (Lam.) K. Koch B,W 

Wax myrtle Morella cerifera (L.) Small B 

Swamp bay Persea palustris (Raf.) Sarg. B 

Sparkleberry Vaccinium arboreum Marshall B,W,F 

Darrow’s blueberry Vaccinium darrowii Camp “Rosa’s Blush” B,W 

Longleaf pine foliage Pinus palustris Mill. B 

Longleaf pine litter Pinus palustris Mill. B,W,F 

Water oak Quercus nigra L. B 

Live oak Quercus virginiana Mill. B 

Dwarf palmetto Sabal minor (Jacq.) Pers. B 

Saw palmetto Serenoa repens (W. Bartram) Small B 
1. USDA, NRCS. 2018. The PLANTS Database (http://plants.usda.gov, 10 January 2018). National Plant Data Team, Greensboro, 

NC 27401-4901 USA; Radford, A.E., Ahles, H.E., Bell, C.R. 1968. Manual of the vascular flora of the Carolinas, University of North 

Carolina Press, Chapel Hill, NC 

2. B – bench, W – wind tunnel, F – field 

 

 

In order to perform calculations related to gas and tar composition as well as modeling the plants 

with physical fire behavior models, many chemical and physical properties of the plant material in 

Table 7 were determined using a variety of methods . Because some live leaves will undergo enzymatic 

hydrolysis when plucked and some live leaves will emit significant combustible volatiles at elevated 

temperatures below the usual oven dry temperatures of 105 °C, samples were collected and 

immediately vacuum dried at 45 °C. Proximate and ultimate analysis, and compositional content of 

live leaves were determined by various standard methods. A special holder equipped with fine 

thermocouples is being used in the cone calorimeter to determine properties such as thermal 

conductivity (Figure 53). 

 

Figure 1 - Specialized holder used for foliage samples in cone calorimeter. 
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A flat-flame burner (FFB) apparatus was used to study pyrolysis of foliar samples from the plants 

in Table 7. (Details of the apparatus and initial results of the tests will be presented by Fletcher et al. 

(2018) in this conference.) The interested reader is referred to Safdari et al. (2018). In addition to the 

offline analysis associated with the FFB, a nitrogen purged Bruker Tensor 37 FTIR spectrometer1 was 

deployed to provide real-time measurement of gaseous pyrolysis products by collecting a gas sample 

every 1.46 seconds (Figure 54). The spectrometer was equipped with a glow bar source, potassium 

bromide (KBr) beamsplitter and a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. 

The spectral resolution was 1 cm–1 with the number of scans set to 1 for flowing measurements and 

1024 for static measurements. The acquisition mode was set to double-sided, forward-backward. For 

the Fourier transform, the apodization function was Blackman-Harris 3-Term with a zerofilling factor 

of 4, and the phase correction mode was Mertz (Mertz 1967). The gas sample was pumped into a White 

cell (Bruker Optics, A136/2-L) with an effective path length of 8 m. FTIR spectroscopy has been used 

extensively to characterize smoke emissions from wildland fuels (e.g. Yokelson et al. 1996). Briefly, 

spectra analysis was carried out using the program Malt5 (Griffith 1996) with 50°C reference spectra 

from the PNNL database (Johnson et al. 2006) and absorption lines from HITRAN. The FTIR method 

allows for the simultaneous quantification of multiple analytes at the same time; up to two dozen 

species can have their absolute concentration (and hence fluxes) quantified. 

 

Figure 2 - FTIR spectrometer setup used in conjunction with flat-flame burner to provide real-time measurement of 

gaseous pyrolysis products. 

 

Seventy-three experimental fires have been burned in a low speed wind tunnel located at the 

Riverside Fire Laboratory (Cobian-Iñiguez et al. 2017). Fuel beds 2 m long and approximately 1 m 

wide composed of longleaf pine needles and various combinations of fetterbush, sparkleberry, and 

inkberry (Table 7) were burned with nominal wind speeds of 0 or 1 m s-1. Pyrolysis gases are sampled 

in real-time using a variety of methods and instruments (Figure 55, Figure 56). Note that the Bruker 

Tensor 37 (T37) is the same device used to determine composition of gases at BYU. For Riverside 

experiments, the resolution was set to 4 cm–1, the acquisition mode was set to double sided, forward-

backward, the apodization function was Blackman-Harris 3-Term, and phase correction mode was 

Mertz (1967) with a zerofilling factor of 2. In order to increase temporal resolution, the number of 

                                                 

 

 

 
1 The use of trade or firm names in this publication is for reader information and does not imply endorsement by 

the U.S. Department of Agriculture of any product or service. 
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scans was set to 1 with continuous measurements to obtain a spectral time resolution of 0.2 seconds. 

This instrument configuration analyzed gases extracted with a 3/8” metal tubing probe above a plant 

during measurements (Figure 56). 

The other FTIR instrument used for gas phase measurements was the Bruker OPAG-22, which is 

an open path gas analyzer. The OPAG was mounted on a tripod on one side of the wind tunnel with 

the glow bar IR source on the opposite side. The path in between the OPAG and the source was 1.2 

meters and it was directly in line with a row of plants (Figure 55). The OPAG is equipped with a KBr 

beamsplitter and a Stirling-cycle cooled mercury cadmium telluride (MCT) detector. Interferograms 

were collected in the range of 4000 to 0 cm–1 at a resolution of 2 cm–1 and at an acquisition mode set 

to double-sided forward-backward. The number of scans per measurement was set to 1 and the 

measurements were repeatedly collected to obtain a time profile with a resolution (time between 

spectra) of 0.53 seconds. Gas samples were pumped into canisters for offline analysis using gas 

chromatography. An array of 9 stainless steel tubes were inserted vertically into the fuel bed. A sample 

of the flaming gases was collected in one canister initially from one tube and a sample of pyrolysis 

gases was collected from the other 6 tubes sequentially as the flame front moved horizontally along 

the fuel bed. 

 
Figure 3 - Setup of 3 instruments used to measure composition of gaseous pyrolysis products in mixed fuel beds of 

longleaf pine needles and small shrubs. 

Mass of a single plant, air temperature and relative humidity within the wind tunnel and in the larger 

combustion room were sampled at 1 hz during each experimental fire. While we have used a variety 

of techniques previously to describe the flow field around experimental laboratory fires, the use of 

smoke tracers and introduced particles was precluded by the gas sampling objective. The TPIV 

technique (Zhou et al. 2003) could not be used because the large glass windows in the wind tunnel are 

opaque to the infrared spectrum. The backgound-oriented Schlieren (BOS) approach was selected to 

determine the flow field in the flame and surrounding the plants (Raffel 2015). The BOS setup (Figure 

) was located upwind of the PNNL gas sampling instruments (Figure 55). Total and radiant heat fluxes 

at the top of the fuel bed were measured using a Schmidt-Boelter type of sensor. A stereo pair of 

vertical photographs of each fuel bed were taken before and after each experimental fire to develop 3-
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D images of the fuel bed. A longwave infrared (LWIR) camera provided a nadir view of the fuel bed 

and measured radiance from the fuel bed will be converted into temperature. 

 

A trial deployment was performed in May 2017 at Ft. Jackson (Figure ). The forest structure was 

characterized from Ft. Jackson’s existing airborne LiDAR data using a canopy height model (Silva et 

al. 2016) for the tree overstory and rasterized metrics for the shrub understory (Hudak, Dickinson, et 

al. 2016; Hudak, Bright, et al. 2016). Destructive fuel sampling methods, 3D measurement of forest 

and understory vegetation structure using an unmanned autonomous system (UAS), heat flux 

measurement, and pyrolysis gas sampling were tested during the trial deployment. Burn plots were 

characterized non-destructively in 3D using terrestrial lidar scans (TLS) and UAS remote sensing tools 

and destructively in adjacent small fuel sample plots to describe the spatial distribution of fuel 

elements. TLS of the small fuel plots were collected from multiple view perspectives to characterize 

3D fuel distributions in 10-cm voxels (volumetric pixels), before and after burning. A digital camera 

mounted on a UAS collected stereo color imagery from overhead perspectives. These metrics serve as 

independent variables for predicting fuel loads measured in the traditional destructive sample plots 

pre- and post-fire in units of kg m-2. 

 
Figure 4 - Fuel bed composed of longleaf pine needles and Lyonia lucida plants. Sample probe to collect pyrolysis 

gases for the Bruker Tensor 37 is indicated by the arrow. 

As pyrolysis gases have never been measured to our knowledge in a field setting, we used a metal 

probe to sample emitted pyrolysis products very close to the fire. The probe is a variable length (1-4 

m) stainless steel tube connected by flexible stainless steel hose to a manifold, from which a canister 

system, real time gas sensors, and particulate matter (PM) filter samplers draw pyrolysis emissions 

downstream from the flame. CO2 and CO were measured in-situ at a 1 Hz sample rate by their 

respective sensors. Hydrogen, methane and C2 – C6 alkanes, alkenes and aromatic compounds of 

smoke samples collected in canisters will be measured by gas chromatography. For the trial 

deployment, the focus was determining how close personnel could get to the fire in personal protective 

equipment to capture samples of pyrolysis gases (Figure 57). 

 

Prior work by the modeling team has examined the ability of the Fire Dynamics Simulator (FDS) 

coupled with the GPyro pyrolysis model to simulate pyrolysis, ignition and burning of single leaf 

particles (Yashwanth et al. 2015, 2016) and the ability of the Wildland Urban Interface extension of 

FDS (WFDS) to model ignition of many leaf particles (Anand et al. 2017). Significant improvements 

have been made to the modeling of convective ignition of leaves in the BYU flat-flame burner by 

Gpyro3D-FDS (Shotorban et al. 2018). One of the improvements included a new rigorous formulation 

for the calculation of the mean porosities in the computational cells of Gpyro to account for the net 
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volume reduction that the condensed (solid) phase experiences within the computational cells during 

moisture evaporation and pyrolysis. Another improvement was the use of a more advanced pyrolysis 

mechanism in Gpyro to include the main constituents of biomass, i.e., cellulose, hemicellulose and 

lignin at virgin and active states in the dry mass. In addition, the modeled leaf now matches the 

measured manzanita leaf dimensions much better than in the previous modeling work (Yashwanth et 

al. 2016). These improvements were necessary in order to model the pyrolysis experiments that are 

being performed at BYU. 

 
Figure 5 - Simple schematic of background-oriented Schlieren configuration used to nonintrusively estimate the flow 

field surrounding pyrolyzing plants. 𝒁𝑫 is the distance of the flame from the background noise pattern, 𝒁𝑩 is the 

distance of the camera lens from the background, 𝝐𝒚 represents the deflection angle caused by the flame-generated 

distortion, 𝑳 is the flame zone width, 𝒇 is the focal length of the camera, 𝜟𝒚′ represents displacement in the camera 

sensor plane and 𝜟𝒚 represents displacement in the background plane. 

The computational configuration resembles the experimental setup of (Pickett et al. 2010). The 

burner and the gas phase combustion within the burner was not modeled; the convective heating effect 

is modeled through the introduction of heated air at 1100 °C which reduces to around 1000 °C at 5 cm 

above the burner which is consistent with experimental measurements. As the initial condition, the 

leaf was assumed to consist of moisture and dry mass with standard air in the pores. The initial mass 

fraction of moisture was determined by the fuel moisture content. Initial dry mass consisted of 33% 

cellulose, 33% hemicellulose and 34% lignin which differ by 1% from the experiments. These slight 

differences had barely observable effect on the simulation results. The initial temperature was set to 

an ambient temperature of 300 K. A 10-step reaction mechanism (Miller and Bellan 1997) was used 

for the dry fuel; each of the dry species underwent three primary reactions of conversion from a virgin 

state to an active state, from the active state to char and pyrolyzate gases, and from the active state to 

tar, and a secondary reaction for breakdown of tar to pyrolyzate. A single step reaction was used for 

moisture evaporation (Bryden and Hagge 2003). A stoichiometric reaction between methane and air 

was used to model the combustion of the pyrolyzate gas in FDS. 

 

 

As previously stated, details of the fast pyrolysis experiments are presented elsewhere. Preliminary 

results from the wind tunnel experiments are presented as a poster in this conference (Weise et al. 

2018). From the pilot field experiment, fuel loading was dominated by litter and duff ranging from 2.8 

to 8.7 and from 3.2 to 10.2 Mg ha-1, respectively. The consumption of the fuel bed categories followed 
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similar trends with the most consumption occurring in the litter and duff categories. Fuel moisture 

content ranged from 8.6% for the litter to 175.2% for the shrub fuels bed categories just prior to 

ignition. It was a challenge in the field to sample the point and time of pyrolysis – the flame is not an 

even front when it hits the plant but a matrix of different branches catching fire (Figure 58). Also the 

time of capture for the pyrolysis emissions is short so the actual volume of a good sample is very small. 

Some of the pyrolysis samples collected had very high H2 and CO levels indicating that we probably 

did measure some pyrolysis emissions. These measurements will be compared with the regular smoke 

samples of flaming combustion that were collected. 

 
Figure 6 - Individual tree crowns in and around the May 2017 trial deployment plots derived from airborne LiDAR 

data. 

 
Figure 7 - Rigid tubing (“fishing pole”) used to sample pyrolysis gases produced by heated sparkleberry during May 

2017 trial deployment at Ft. Jackson, South Carolina, USA. 
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Figure 8 - Typical range in fire behavior observed on low density plot burned May 2017 at Ft. Jackson, SC. 

The pyrolysis mechanism included in Gpyro was initially validated against published experimental 

and computational TGA results. The burning of leaf-like fuels with three initial fuel moisture content 

(FMC) of 40%, 76%, and 120% was modeled. The time evolutions of the normalized mass were good 

for the modeled fuels with 76% and 120% FMCs and fair for the one with a 40% FMC when compared 

to the experimental burning results of four manzanita leaves with unspecified FMCs. The computed 

ignition time was also in good agreement with the measurement. The computed burnout time was 

somewhat shorter than the measurement. Modeling revealed the formation of unsteady flow structures 

including vortices and regions with high strain rates near the fuel that acted as a bluff body against the 

stream of the burner exit (Figure 59). These structures played a significant role in the spatial 

distribution of gas phase temperature and species around the fuel, which in turn, had an impact on the 

ignition location. Fuel moisture content primarily affected the temperature response of the fuel and 

solid phase decomposition. Full details of these results can be found in (Shotorban et al. 2018). 

 
Figure 9 - Contours of oxygen mass fraction and velocity vectors on an xz slice passing y=0 (left) and yz slice passing 

x=0 (right) at t=11.5 s for an initial FMC of 76%. See Erro! A origem da referência não foi encontrada. for locations 

of the slices. 
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