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Abstract 

Defining pyro-regions, i.e., of homogenous zones of fire activity, is an on-going task in Spain with few 

case studies in the literature. Their characterisation and understanding is a crucial step towards improving 

forest fire management and prevention. It is widely agreed that fire activity is non-stationary. Several works 

already report temporal dynamics in fire frequency and burned area. In this work we propose a spatial-

temporal approach to define pyro-regions considering both structural and temporal fire behaviour using 

historical fire records from the EGIF database. A combination of Self Organizing Maps (SOM) and 

hierarchical clustering is applied to time series (1974-2015) of fire regime features: number/burned area of 

summer fires, number/burned area of large fires (>500 ha), number/burned area of natural fires, 

number/burned area of winter fires and number of small fires (<1 ha). The structural component of fire 

activity is computed as the average value whereas the temporal evolution is addressed by means of Sen’s 

slope.  

Prior to cluster analysis, fire features were submitted to Principal Component Analysis with Varimax 

rotation. Eigenvalues were then pre-classified using SOM. Subsequently, hierarchical clustering was applied 

to SOM outputs. We obtained a set of 4 structural clusters relating to increased number of fires; low fire 

incidence, slightly linked to winter season; large and natural fires; and moderate impact of human-related 

large fires mainly. The process was repeated using Sen’s slope to build the dynamic component, ultimately 

characterised by: highly dynamic winter with increased in summer frequency; increased summer burned area 

and natural fires; and small fires; and no trend.  
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Forest fires are a highly complex phenomenon affecting most ecosystems worldwide. Fire is known 

as a natural process responsible for the evolution of wild communities, but nowadays it has been 

altered, with potential undesired effects on vegetation structure, composition and ecosystemic 

functions. Fire activity is controlled by multiple factors such as climate, fuel, physiography and human 

activity. Humans influence fire incidence acting as both initiators and suppressors, increasing the 

complexity of the phenomena. Thus, understanding fire regime’s components and behaviour (both 

temporal and spatial) may improve our current knowledge. Mapping fire regimes may contribute 

enhancing fire planning or risk assessment; as well as diminishing undesired ecological impacts 

(Morgan et al. 2001). In this sense, one of the most promising lines of study lies in the definition and 

characterization fire regime itself. Fire regime is usually described using several quantifiable 

parameters such as affected area, fire frequency, cause, seasonality, fire size, etc. (Boulanger et al. 

2014). Currently, there still is an open debate on the definition of the concept itself, with slight 

variations depending on the scale of analysis, the length of the study period or the available 

information. 
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Several attempts to define fire regimes from different approaches are already found in the literature. 

Without being exhaustive we find some analyses using remote sensing data (Chuvieco et al. 2008) or 

climate information (Boulanger et al. 2013, 2014; DaCamara et al. 2014). Others employ fire weather 

danger indexes coupled to fuel and environmental conditions (Perera and Cui 2010). Despite of the 

success in the characterisation of fire regime, most works still rely on existent zoning schemes to 

spatialize their boundaries and extent: administrative units (Pereira et al. 2015), ecoregions (Malamud 

et al. 2005; Kasischke and Turetsky 2006; Perera and Cui 2010; Mori and Johnson 2013) or a 

combination of both (Wotton et al. 2010).  

In the case of Spain, examples of fire regime zoning are really scarce, with Moreno and Chuvieco 

(2013) as the most representative effort. We find other examples in Vázquez de La Cueva et al. (2006) 

and more recently in Montiel Molina and Galiana-Martín (2016). These approaches are mostly based 

on cluster analysis, the most used and well-known zoning approach. They are a flexible multivariate 

technique with different available implementations, widely used to analyse ignition points distribution 

(Wang and Anderson 2010; Serra et al. 2013; Pereira et al. 2015; Parente et al. 2016) or occurrence 

large fire linked to synoptic climatology (Rasilla et al. 2010). Nevertheless, all of them provide a static 

picture of fire regime, i.e., disregarding the evolution of fire features over time and space. For this 

reason, a temporal perspective is extremely necessary. 

In this work we propose and exemplify a method to outline homogenous fire regime zones (the so-

called pyroregions) in mainland Spain. We combine average information of fire features with their 

temporal evolution (trend detection) during the study period (1974-2015). The method is based on 

PCA and Self Organizing Maps coupled to hierarchical clustering. Such combination of methods is 

applied to the averaged values of fire features and their respective trends, separately. By doing so we 

are able to discriminate static and dynamic pyroregions. 

 

 

 

The study area encompasses the whole mainland Spain covering a surface of around 498,000 km2. 

Climate distribution in the region allows to differentiate two regions: Mediterranean and Oceanic. The 

first one is characterized by high annual thermal amplitude with hot-summer in the inner region and 

milder conditions towards the coast. Precipitation is irregularly distributed both in terms of time and 

space, with maximums peaking in autumn and spring. In addition, the driest areas are located in the 

southeast region and the Ebro Valley (inner Mediterranean region). On the other hand, Oceanic climate 

is notable by milder temperature values during summer-winter with high precipitation values regularly 

distributed throughout the year (average values over 1,000 mm) with maximum during winter. From 

the biogeographical point of view, the Oceanic area is covered by diverse types of vegetation from 

deciduous to evergreen oak woodlands (Quercus robur, Fraximus excelsior or Fagus sylvatica) and 

large areas of scrubland and grassland, as well as areas with afforestation of fast-growing species such 

as Pinus radiata and Eucaliptus globulus. The Mediterranean vegetation coexists with complex 

mosaics of agricultural systems and plant communities, such as sclerophyllous and evergreen 

vegetation. Oak (Quercus ilex) and pine (mainly Pinus halepensis, the most widespread of the species 

introduced by afforestation) forest, and thermophilous scrubland, dominate the region. In addition, 

altitudinal belts exist within the highest ridges such as the Pyrenees along the French border or Sierra 

Nevada on the southern Mediterranean coast, being home to a large variety of tree species which are 

common in central Europe (deciduous species, beech, oak, and some mountain pines: Pinus uncinata, 

Pinus sylvestris). 
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Fire records in the period 1974-201 5 were collected from the General Wildfire Statistics (EGIF). 

Selected fire records were on a 10x10 km UTM reference grid. Then, fire frequency, total burned area 

(ha), ignition date and source were extracted from the database. Is it important to note, that only those 

grids with at least a 25% of forest cover were retained for analysis. Therefore, 3,308 out of 5200 grids 

were finally considered in the analyses. 

 
Figure 1 - Spatial distribution of the three regions (Northwest, Hinterland and Mediterranean) also NUTS3 and 

NUTS2 units in mainland Spain (left) and digital elevation model (right) 

Two fire seasons were defined with the aim of differentiating the intra-annual peaks of fire activity 

(August and March). So, annual fire data were split into spring – summer season (S), from April to 

September; and autumn-winter season (W) from October to March. From all available fire information, 

we computed 9 fire features: number of fires and burned area during summer (NS-BAS), summer 

frequency and burnt area of large fires –above 500 ha– (N500, B500), summer frequency and burnt 

area of natural fires (NL-BL), number of fires and burnt area during winter (NW-BAW) and total 

number of small fires (N <1 ha). 

 

In order to account for the temporal dimension of fire activity during the analyzed time span we 

estimated the magnitude of the temporal change using Sen’s slope (Sen 1968) test. This allows to 

outline fire zones according to the temporal behavior of fire features rather than address the average 

‘structural’ pattern alone.  

 

To characterize the final pyroregions we used data related with environmental and human factors. 

Temperature and precipitation data in the period 1974-2010 were extracted from MOTEDAS 

(González-Hidalgo et al. 2015) and MOPREDAS (González-Hidalgo et al. 2011) datasets (Figure 3). 

Additionally, forest communities were derived from the Forest Map of Spain. Finally, the Human 

Pressure Index (Figure 2) was calculated according to Jiménez-Ruano et al. (2017).  
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Figure 2 - Spatial distribution of the Human Pressure Index (left) and main forest formations from National Forest 

Map (right). 

 

 
Figure 3 - Climate factors. Top-left, average summer temperature; top-right, average winter temperature; bottom-left, 

summer mean annual precipitation; bottom-left, winter mean annual precipitation 
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Prior to submit fire data to cluster analysis, a PCA with varimax rotation was applied to reduce the 

amount of information. All fire features (both structural and dynamic) were scaled before applying 

PCA. Principal Components (PC) were selected according to the Kaiser Criterion, i.e., only those PC 

with standard deviation over 1 were retained. 

 

The objective of clustering analysis is grouping objects into categories such that objects within one 

cluster share more in common with one another than they do with the objects of other clusters (Gore 

2000). Many clustering algorithms do exist. The most basic variants resort to data partition and 

minimizing the distance between points of a same group from another assigned as center. Among all 

the clustering methods, we selected hierarchical clustering coupled to Self-Organizing Maps to 

delineate our pyroregions. 

The purpose of hierarchical clustering is determinate the best clustering scheme from different 

results obtained. It is proceeded with the application of various combinations of number of clusters, 

distance measures and clustering methods. This algorithm routinely produce a series of solutions 

ranging from n clusters to a solutions with only one cluster present (Charrad et al. 2014). It requires a 

dissimilarity measure (or distance) and an agglomeration criterion. Many distances area available 

(Manhattan, Euclidean, etc.) as well as several agglomeration methods (Ward, single, centroid, etc.). 

In our case, we employed all methods available in the NbClust function from RStudio, the Canberra 

distance and the Ward D2 method (Murtagh and Legendre 2014), which minimizes the total within-

cluster variance and the dissimilarities are squared before cluster updating. 

SOM is a neural-network algorithm that implements an orderly mapping whose main strength lies 

in converting complex and non-linear relationships between high-dimensional data (Kohonen 1998). 

In other words, it compresses information while keeping topological and metric relationships of the 

input data. The algorithm consists of a two-dimensional model of regular grid of nodes, where some 

data are associated with each node. In each iteration, the SOM algorithm computes all the models to 

best describe the domain of the observations. The idea is to group the similar models that are closer to 

each other in the grid than the more dissimilar ones.  

As aforementioned the cluster approach was applied both to ‘structural’ and ‘dynamic’ components, 

thus 2 sets of cluster were obtained. In a final step we overlay all clusters (structural and dynamic) to 

into the final pyroregions.  

 

 

Figures 4 and 6 show the spatial distribution of the structural (4) and dynamic (3) clusters, and their 

description, respectively. First structural cluster characterises by high fire activity but no large fires; it 

extends across the Northwest region. In turn, cluster 2 comprises areas of moderate winter activity, in 

the remaining territory. Cluster 3 brings together summer large fires (>500 ha) caused by lightning. 

This cluster covers mostly mountain ranges. Finally, cluster 4 brings together medium-size human-

caused fires.   

Dynamic clusters depict a different behaviour. Tendencies were grouped into clusters 1 and 3. In 

the first case, winter trends and the increase in summer small fires are grouped in cluster 1. 

Geographically, these trends are located in the north-western end, some locations of the inland 

mountain ranges and few spots of the Mediterranean basin. Remaining trends depict an increase in 

overall area burned during summer and decreased incidence of natural fires (Table 1), occupying an 

area that mainly extends over the northern and northwest hinterlands. 



Advances in Forest Fire Research 2018 - D. X. Viegas (Ed.) 

Chapter 3 – Fire Management 
 

Advances in Forest Fire Research 2018 – Page 500  

 

When combining both cluster approaches into a single product we obtain a final set of 8 pyroregions 

(Figures 5 and 6). Generally speaking, three main groups of pyroregions can be distinguished: (1) those 

experiencing increase in the fire activity, especially small fires; (2) regions with no noticeable trend; 

and (3) those characterised by increased summer burnt area and lightning-triggered wildfires. 

 
Figure 4 - Spatial distribution of the clusters structural (colour codes) and dynamic (shape codes).  

Table 1 - PCA-Varimax eigenvectors of the first two components of static (fire features averages) and the first three 

components for trends in fire features 

 Fire features NS BAS N500 B500 NL BL NW BAW N <1ha 

Static PC1 0.526 0.148    -0.152 0.526 0.328 0.529 

PC2  -0.508 -0.436 -0.581 -0.212 -0.408    

Trends 
PC1 0.534 -0.271     0.512 0.262 0.557 

PC2     -0.702 -0.705    

PC3  0.674     0.230 0.672 -0.203 

 

 

 

Figure 5 - Description of the contribution percentage for each fire feature in each cluster static (four on the top) and 

in each cluster of trends (three on the bottom) 
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Figure 6 - Spatial distribution of the final pyroregions 

The most relevant pyroregion in terms of spatial extent is 4 (55.1%), characterized by a low fire 

incidence without trends. Secondly, pyroregion 8, covering 16.4% of the territory, is represented by 

medium-sized fires mainly anthropogenic. With a 10.2% of the study area, pyroregion 6 combines 

large and natural fires with an increase in summer burned area. Pyroregion 1 (5.4% area) is mainly 

located in the Northwest region. It shows a high fire frequency linked to winter dynamics, as well as 

an increase in summer and small fires. Remaining pyroregions account for just over 1% and less than 

4% individually. In summary, they would reach roughly 11.6% of the territory. These are characterized 

by a high frequency with no trends (2), or with an increase in summer burnt area and natural fires (3). 

In addition, large fires with an increase in summer-winter activity and small fires (5) and large fires 

associated with an increase in summer burnt area and natural fires (7). 

 

 

The inclusion of climate-and-human variables enables deeper insights into the characterisation of 

the pyroregion (Figure 7): 

Pyroregion 1: small winter fires and increased summer fire activity. It covers conifer and reforested 

communities with large rainfall and moderate warm winters and low human pressure. 

Pyroregion 2: low fire activity in areas with moderate rainfall, temperate winters and summers. 
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Pyroregion 3: increasing winter fire incidence in shrubland communities linked to increased human 

pressure, large precipitation and moderate temperatures. 

Pyroregion 4: low fire activity in isolated warm regions with conifer and mixed forest. 

Pyroregion 5: low fire activity increasing during summer. It covers warm and dry regions with a 

variety of forest communities. Low human pressure. 

Pyroregion 6: large natural fires with moderate-low human pressure, high temperature and low 

rainfall; affecting the whole spectrum of forest communities. 

Pyroregion 7: very low fire activity in shrubland communities. 

Pyroregion 8: natural fires in warm and dry locations affecting tree communities. 

 

 

The proposed methodology enabled identifying 8 pyroregions providing a more complete picture 

than previous attempts. We took a step further, not only by bringing in the dynamic component of fire 

incidence but digging into more sophisticated zoning techniques. Our contribution further deepens into 

fire features while complementing them with their main trends such as the rise in summer and winter 

activity or the increase in small fires. 

 
Figure 7 - Pyroregion description. Left column, fire features; center, environmental and human drivers; right, forest 

communities. 

When combining the resulting pyroregions with climatic and human factors, we deliver deeper 

insights into what factors may be driving fire regimes. Our findings suggest coincidence between 

temporal clusters of increased fire activity (except for natural fires) dominated by pine woodland and 

reforestation communities (Vázquez et al. 2015). In many areas of Spain, plantations for timber 

harvesting and pine tree forests were promoted over the last decades (Pausas et al. 2004). This factor 

is known to increase flammability in the event of favourable weather conditions (Shakesby 2011).  

Regarding climatic factors, fire-prone conditions along the Mediterranean coast seem to promote 

larger human-cause fires, especially during summer. However, the correspondence of climate with 
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trend clusters is not clear. In this sense, the human impact (represented here as the combination of the 

length of wildland-urban and wildland-agricultural, WUI-WAI interfaces and demographic potential) 

seems to be more closely related with fire activity (Rodrigues and de la Riva 2014). 

 

 

In this work we propose a pyrogeographical characterization of fire behaviour using averaged of 

fire features and their main temporal trends in mainland Spain. We submitted fire data in the period 

1974-2015 to PCA and cluster analysis.  

Our findings suggest 8 different pyroregions in mainland Spain, depicting by three structural fire 

regimes (high fire frequency, large-natural fires and medium size human-cause wildfires) and two 

main trends (overall increase in fire activity) and decrease in the incidence of natural fires. The 

implications of the delimited pyroregions play a crucial role in better understanding fire regimes in a 

broad context, not only in terms of their structural patterns but also of its main trends. Moreover, 

assessing the environmental and human conditions in the proposed pyroregions improved our 

understanding of the underlying drivers of fire regimes.  
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