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Abstract 

We introduce new Lagrangian surface forest fire spread model, which is based on the evolution of a three 

dimensional surface curve representing the fire perimeter on the topography. We split the general motion of 

any point of the surface curve into the normal and tangential directions. The velocity in the normal direction 

is given by the rate of spread, i.e. it depends on the local characteristics of fuel, terrain slope, wind speed and 

velocity and shape of the fire perimeter with respect to the topography (geodesic and normal curvature). The 

velocity in the tangential direction, which does not change the shape of the fire perimeter, is used to 

redistribute the curve points asymptotically uniform along the curve. This surface curve is projected into the 

horizontal plane as a planar curve, which evolution is numerically computed and evolved curve is mapped 

back to the surface. For the numerical computations we discretize the arising intrinsic partial differential 

equation by a semi-implicit scheme in curvature term and for the advection term we use the so-called inflow-

implicit/outflow-explicit approach and implicit upwind technique which guarantee solvability of linear 

systems by efficient tridiagonal solver without any time step restriction and robustness with respect to 

singularities. Our fast and reliable treatment of topological changes (splitting and merging of the curves) with 

computational complexity O(n) is described and presented on examples as well. We demonstrate the 

influence of the fire spread model parameters on a testing and real topography.  
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In the mathematical literature, there exists a number of studies about the evolution of planar and 

surface curves with many various applications. We distinguish two main approaches to handle the 

curve evolution problems, the so-called Lagrangian (direct or vector-based) approach, see e.g. (Dziuk, 

1999), (Mikula & Ševčovič, 2004), (Balažovjech, et al., 2012) and the so-called Eulerian (level-set or 

raster-based) approach, see e.g. (Sethian, 1999), (Osher & Fedkiw, 2002). In the Eulerian level-set 

approach, one solves the problem of curve evolution in a 2-D computational domain which is usually 

discretized by a uniform grid and the number of discrete unknowns is proportional to the number of 

such 2-D grid points. The evolving curve is then obtained implicitly, as the zero isoline of 2-D + time 

level set function. In the Lagrangian approach one evolves directly the curve discretization points, so 

it is spatially 1-D problem and thus computationally much simpler and faster than the level-set method. 

However, the Lagrangian approaches need the so-called tangential grid point redistribution  (Hou, et 

al., 1994), (Barrett, et al., 2009), (Mikula & Ševčovič, 2001), (Mikula & Urbán, 2012) and efficient 

algorithm for the detection and treatment of topological changes during the evolution (Balažovjech, et 

al., 2012), (Mikula & Urbán, 2012), (Benninghoff & Garcke, 2014), which are on the other hand 

automatically handled by the level set method (Sethian, 1999), (Osher & Fedkiw, 2002). When the 

Lagrangian methods are tangentially stabilized and are able to treat the topological changes fastly, they 

represent really efficient approaches to 2-D or surface curve evolution 

We introduce a new surface forest fire spread model, which is based on the evolution of a three 

dimensional surface curve representing the fire perimeter on the topography. The mathematical model 

for curve evolution is based on the empirical laws of the fire propagation influenced by fuel, wind, 
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terrain slope and the fire perimeter shape with respect to the topography (geodesic and normal 

curvature). Our fast treatment of topological changes (splitting and merging of the curves) is described 

and presented on examples as well. We demonstrate the influence of the fire spread model parameters 

on a testing and real topography and we reconstruct a simulated grassland fire. 

 

 

In our model we use the so-called Lagrangian approach to the evolution of a surface curve, 

representing a fire perimeter. The surface is given as a graph of a discrete topography function φ(x) = 

φ(x,y), which is given, e.g., by a digital model of terrain. The discrete surface curve points X = (x, 

φ(x)) are evolving in the normal direction, given by outer unit normal vector  by following formula  
 

, (1) 
 

where 𝒱 is the normal velocity of the 3-D surface curve. The outer unit normal vector  is given 

as , where , with s being the arc-length parameter and      

. For better clarity see Figure 1, where we illustrate also 

the curvature vector  and its components, geodesic and normal curvature 
, which are useful in the radiation heat influence modeling. 

 

Figure 1 - Surface curve and the outer unit normal vector , unit tangent vector , normal to the surface , 

curvature , geodesic curvature  and normal curvature . 

Design of the normal velocity 𝒱 is crucial for a reliable propagation model. We propose a simple 

formula considering fuel burnability, topography slope, wind velocity and direction and the shape of 

the fire perimeter with respect to the topography  

, (2) 

where  is an external driving force,  is a geodesic curvature,  is a normal  curvature and 

,  and  are weights of the external force, geodesic curvature and normal curvature. This formula 

provides the dominant role for the external force  influenced by local fire perimeter shape (  and 

). It also ensures that the fire perimeter will not burn into the unburnable regions due to the 

curvatures.  

Fire perimeters curvature influences the overall rate of spread, see (Weber, 1989) and (Hilton, et 

al., 2017). In our approach we split the curvature into geodesic  and normal curvature . In case 

of flat terrain (  = 0) and linear fire perimeter (  = 0) the fire spread depends only on the external 

force .  Considering non-linear fire perimeter, i.e. the curve with convex and concave parts in the 

tangent plane, the geodesic curvature ≠ 0. In parts with < 0 the fire perimeter is accelerated due 

to radiant heat accumulation and in parts with > 0 the radiation heat dissipation slows down the fire 

perimeter propagation. If the topography is a valley or a ridge, then ≠ 0 and it expresses the 

topography influence to radiation heat transfer. In the valley > 0 and causes the fire spread 

acceleration due to the accumulated radiation heat. On the other hand, on the ridge < 0 slows the 

fire spread down, since the radiation is dissipated.  
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The external driving force is given by the following formula   

, (3) 

where  is a fuel influence,  is a wind influence and  is a slope influence on the 

rate of spread, with  being a 3-D wind vector,  being a 3-D slope vector and  being an outer unit 

normal vector of the surface curve.  

 

Figure 2 - The example of a 2-D scalar function (x), created as a weighted combination of selected factors, such as 

species, age and bulk density. 

The fuel influence  is in fact a scalar function (x) given over the whole computational domain. 

The values of such scalar function ranges from 0 (black color) to 255 (white color). These values 

express the spatial variability of rate of spread no wind and flat terrain conditions. According to 

(Krasnow, et al., 2009) we suppose, that the fuel influence function (x) is given by a weighted 

combination of the most important factors, such as species, age, bulk density, fuel moisture, vertical 

arrangement, fuel loading and compactness. Some of these factors can be determined by a typological 

forestry maps, like the species, age or bulk density. Their combination creates the fuel influence 

function (x), see Figure 2, where the young, dense coniferous forest is considered to be with the 

highest spread rate. 

Wind influence on the fire spread is non-negligible. Wind increases the fuel preheating, drying and 

it supplies the oxygen to the fire. If the wind direction and fire spread direction are the same, the rate 

of spread will increase. On the other hand, in case of wind blowing against the fire spread, the rate of 

spread will decrease. Our model requires the 3-D wind vector  which we obtain from measured 2-D 

wind vector  using formula 

 

(4) 

Such vector is always parallel to the topography and . According to (Viegas, et al., 

2002), (Scott & Burgan, 2005), the wind influences the rate of spread exponentially, so we consider 

the scalar product of the wind vector and the outer normal vector as an exponent of a function 

in the form 

, (5) 
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where  is a positive parameter. If those vectors are perpendicular, , the external force 

 is not influenced by wind, because . If the vectors are parallel, , , 

the influence of wind is the strongest. In all other cases, the exponent of the function is 

given by a projection of the wind vector onto the outer normal vector , see Figure 3.  

 

Figure 3 - The example of a projection of the wind vector (white) to the normal vector  (black). The wind vector 

is computed from a measured two-dimensional wind vector  (yellow). Then the dot product  can result in 

various cases, including . 

The topography slope increases the radiation and convection heat transfer up the slope. Similarly 

to wind, slope can increase or decrease the rate of spread. The uphill fire spread rate is increased, while 

the downhill fire spread is slowed down. The topography slope is given by a gradient of the topography 

function ∇φ. Since our model requires a 3-D vector of slope, we use formula similar to (4) 

. (6) 

According to (Viegas, et al., 2002), (Scott & Burgan, 2005), (Butler, et al., 2007) the slope influence 

to the rate of spread is exponential and depends on the projection of the slope vector  onto the outer 

normal vector  

, (7) 

where  is a positive parameter. 

 

 

For numerical computation we follow (Mikula & Ševčovič, 2006) and we numerically solve the 

evolution of a projected planar curve. It means, we project the 3-D surface curve into the 2-D planar 

curve and the evolution is computed for every discrete planar curve point x = (x,y). Time evolution of 

the curve point x is given by following formula 

, (8)  
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where β is a planar curve velocity in a direction of is outer unit normal vector N, α is a planar curve 

velocity in a tangent direction, T is a unit tangent vector. This formula splits the general motion of any 

point of the 2-D projected planar curve into the normal and tangential directions. The velocity β in the 

normal direction N changes the shape of the curve. The velocity in the tangential direction, which does 

not change the shape of the fire perimeter, is used to redistribute the curve points asymptotically 

uniformly along the curve, where we follow (Mikula & Ševčovič, 2001), (Mikula & Ševčovič, 2004), 

(Mikula & Ševčovič, 2006), (Mikula & Urbán, 2014). 

Our evolution approach allows us to prescribe the normal velocity 𝒱 of the 3-D surface curve (in 

the previous section) and to effectively compute the evolution of the projected 2-D planar curve. To 

project the normal velocity 𝒱 of the surface curve to the normal velocity β of the planar curve we use 

the formula  

, (9)

 

where ∇φ is a gradient of a topography function φ(x).  

Numerical discretization is based on the flowing finite volume method. In order to get a discrete 

form of (8), using the Frenet equation  we rewrite (8) to the form of an intrinsic partial 

differential equation 

, (10) 

where 

, (11) 

,  (12) 

, (13) 

where  is average value of  along the projected planar curve,  is a curvature of planar 

curve,   is parameter determining how fast the redistribution becomes uniform, is total length of 

planar curve and is a so-called local length of 2-D planar cuve, for details see  (Ambroz, et al., 

Submitted). 

We use a semi-implicit scheme in curvature term. For the advection term we use the so-called 

inflow-implicit/outflow-explicit approach (Mikula, et al., 2014) which guarantee solvability of arising 

linear systems by efficient tridiagonal solver without any computational time step restriction. In the 

end, we obtain the cyclic tridiagonal system of linear equations 

 
(14) 
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.

 Due to 

stability reasons, e.g. in case of curve merging, this general numerical scheme is locally replaced by 

the implicit upwind method. 

 

 

In the Lagrangian approach, there are some issues throughout the curve evolution left to treat 

additionally. The curve can be self-intersected or can be intersected by another curve. Such self-

intersection can occur when the curve velocity is locally slowed down significantly (e.g. nonburnable 

regions) , see Figure 4. These situations require a topological change, either splitting or merging. 

However, the detection of such topological changes can be computationally demanding. The most 

often used strategy of pairwise comparison of grid points have computational complexity O(n2). In our 

propagation model we use our O(n) approach, which makes the overall computations fast and reliable 

in fire perimeter evolution. Our main idea for the topological changes detection, see also (Balažovjech, 

et al., 2012), is to create an array of cells over the whole computational domain and to check a narrow 

strip of cells along the curves. In these cells we subsequently check whether there are two non-

neighboring points of one curve, which indicates splitting. Similarly we check the cells along the 

curves, for the case of two points from different curves belonging to one cell. Such situation indicates 

merging.  

    

Figure 4 - Merging and splitting of the curves on a ROS map. On the left, four red circles representing the initial fire 

perimeters and their time evolution is plotted. Curves with the same color represent the fire perimeters position at the 

same time. On the right, there is the same situation, but the evolution of different fire perimeters is plotted in different 

color, red, yellow, green and blue, until their merging. After the merging, the color changes to a combination, e.g. 

green and blue curves merge as a cyan curve.  



Advances in Forest Fire Research 2018 - D. X. Viegas (Ed.) 

Chapter 3 – Fire Management 

 

 Advances in Forest Fire Research 2018 – Page 583 

 

During the evolution the curve length changes and thus we need to locally add or remove points in 

order to maintain appropriate number of grid points. Then, the asymptotically uniform redistribution 

ensures the desired segment length hd. Thanks to this, we can set the dimensions of the cell along the 

curves to 2hd x 2hd. This ensures maximally 3 neighboring points of smooth curve in one cell.  

Basic idea for the splitting detection is to traverse the curve points and mark the cells, where the 

points belong. First, we mark the cells where all curve points belong by 0. Then we traverse the curve 

again and we mark the cells by the belonging point number. If a point belongs to a cell already marked 

by a non-neighboring point the curve will split, since there are more points between the point that 

entered the cell first time and the point entering the cell again. Those two points in one cell are not 

necessarily the nearest in their neighboring, thus we find the nearest by pairwise comparing. Then the 

curve is split in the nearest points into the enlarging (burnt area) and shrinking (unburnt area) curve. 

The merging detection is very similar. We traverse every curves points and mark the cells, where the 

points lie by 0. Then we subsequently traverse the curve points again and we mark the cells by the 

curve number. When a cell is already marked by a different curve the curves will merge, since the 

points of two curves belong to the same cell. To merge the curve, we find the nearest points between 

the neighboring points of the points belonging to the same cell. 

 

 

In the following experiments we present the behavior of our propagation model on a simple 

topography. Valley and ridge are given by two planes inclined by 30 degrees from the horizontal plane 

at both axis direction. The initial fire perimeter is given as a circle in the horizontal plane. 

First, we present the influence of the geodesic and normal curvatures on the curve evolution velocity 

in the valley and on the ridge, see Figure 5. Although those experiments do not simulate the fire 

behavior (due to a neglected slope influence), they are suitable for the presentation of the heat 

accumulation or dissipation influencing the rate of spread. 

 

 
Figure 5 - The comparison of the curve evolution in the valley (top row) and on the ridge (bottom row) driven by unit 

external force (green) and accompanied by the geodesic curvature (red) or normal curvature (blue). Geodesic 

curvature slows the curve velocity locally down. The normal curvature speeds the velocity up in the bottom of the 

valley and slows the velocity down on the top of the ridge. 



Advances in Forest Fire Research 2018 - D. X. Viegas (Ed.) 

Chapter 3 – Fire Management 

 

Advances in Forest Fire Research 2018 – Page 584  

 

In the next experiments we simulate the fire spread, considering all the influences in the valley, see 

Figure 6, and on the ridge, see Figure 7.  

     

   
Figure 6 - Fire perimeter evolution in the valley. We consider homogenous fuel, geodesic and normal curvatures 

influence and the slope influence without the wind influence (top row) and considering the wind perpendicular to the 

valley (bottom row). 

 

 

 

Figure 7 - Fire perimeter evolution on the ridge. We consider homogenous fuel, geodesic and normal curvatures 

influence and the slope influence without the wind influence (top row) and considering the wind perpendicular to the 

ridge (bottom row). 

On the following examples, we present a simulations over a real topography of mountainous area 

of Staré Hory in central Slovakia. The fuel influence map was made from the forestry typological map 
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in resolution 0.83 m, consists of 4 colors and the rates of spread were assigned from  (Prichard, et al., 

2013) as follows 

• black (roads, rivers) - non burnable, 

• dark grey (broad-leaved forest) - 0.46 m.min-1, 

• light grey (mixed forest) - 0.76 m.min-1, 

• white (coniferous forest) - 1 m.min-1. 

The other model parameters can be estimated by an inverse modeling presented in (Ambroz, et al., 

Submitted). Following examples show the simulations considering various wind directions and various 

initial conditions. 

  

Figure 8 - Simulation with 4 initial fire perimeters (red) and their evolution in 1-hour intervals. On the left is the view 

from above, right top is view from south and right bottom is view from west. Wind is considered to be southwest at 

speed 4 m.min-1. This simulation of 10 hour spread took 45 s of computational time. 

  
Figure 9 - Simulation with 4 initial fire perimeters (red) and their evolution in 1-hour intervals. On the left is the view 

from above, right top is view from south and right bottom is view from west. Wind is considered to be west at speed 

4m.min-1. This simulation of 10 hour spread took 49 s of computational time. 
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Figure 10 - Simulation with 4 initial fire perimeters (red) and their evolution in 1-hour intervals. On the left is the 

view from above, right top is view from south and right bottom is view from west. Wind is considered to be west at 

speed 1m.min-1. This simulation of 10 hour spread took 53 s of computational time. 
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