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Abstract 
The objective of this work is to demonstrate the ability of the FIREFLY data-driven wildfire simulator to 
forecast the fire spread behavior over complex terrain topography. The prototype simulator features the 
following main components: a level-set-based fire propagation solver that adopts a regional-scale viewpoint, 
treats wildfires as propagating fronts, and uses a description of the local rate of spread (ROS) of the fire as a 
function of vegetation, topographical and meteorological properties based on Rothermel's model; a series of 
observations of the fire front location; and a data assimilation algorithm based on an ensemble Kalman filter 
(EnKF). The data assimilation algorithm also features a choice between a parameter estimation (PE) approach 
in which the estimation targets are the input parameters of the ROS model, and a state estimation (SE) approach 
in which the estimation targets are the spatial coordinates of the discretized fire front. This study shows the 
extension of the FIREFLY data-driven simulator to complex terrain topography. The fire propagation is 
represented by time-evolving two-dimensional fronts along the horizontal plane in order to remain consistent 
with the formulation of the PE-/SE-based EnKF algorithms that were initially developed for flat terrain 
configuration. While evaluated on synthetic cases in this study, the performance of the EnKF algorithm is shown 
to be preserved in the case of complex terrain. Thus, this study emphasizes the potential of data assimilation to 
dramatically increase wildfire simulation accuracy in real-world wildfire events.  
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1. Introduction 

 
The challenges found on the route to developing quantitative fire models are two-fold. First, there is 
the classical modeling challenge associated with providing accurate mathematical representations of 
the multi-physics multi-scale processes that involve biomass pyrolysis, combustion, flow dynamics as 
well as atmospheric dynamics and chemistry (Sullivan 2009a, 2009b). Second, there is the less 
common data challenge associated with providing accurate estimates of the input parameters required 
by the models (Viegas 2011). Current regional-scale fire models are limited in scope because of the 
large uncertainties associated with the accuracy of physics-based models, because also of the large 
uncertainties associated with many of the environmental conditions that are required as input 
parameters to the fire problem (Rochoux 2014). A possible approach to overcome the limitations found 
in numerical simulations of wildfire spread as well as to develop predictive models that are compatible 
with operational applications is data assimilation (DA). This approach takes advantage of recent 
progress made in airborne remote sensing that is promising for real-time monitoring of the fire front 
location (Paugam et al. 2013). DA offers a convenient framework for integrating fire sensor 
observations into a computer model along with the estimated modeling/observation uncertainties with 
the goal to provide optimal estimates of the control variables and thereby to improve predictions of 
fire spread behavior. The application of DA and inverse modeling has recently been explored in the 
area of wildfire research (e.g. Mandel and Beezley 2007; Lautenberger 2013; Rochoux et al 2013). 
The key idea is that, when used alone, neither measurements nor computer models can provide a 
reliable and complete description of the real state of the physical system. 
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The present study is an extension of our previous work in Rochoux et al (2013, 2014a, 2014b) and 
Rochoux (2014), in which a prototype data-driven wildfire spread simulator capable of forecasting the 
wildfire spread behavior was developed. The prototype simulator features the following main 
components: a level-set-based fire propagation solver (Rehm and McDermott 2009) that treats 
wildfires as propagating fronts and uses a description of the local rate of fire spread (ROS) as a function 
of vegetation, topographical and meteorological conditions based on the model due to Rothermel 
(1972); a series of observations of the fire front location; and a DA algorithm based on the ensemble 
Kalman filter (EnKF) to account for some of the non-linearities in the mapping between control space 
and observation space. The DA algorithm also features a choice between a parameter estimation (PE) 
approach in which the control variables are the input parameters of the ROS model (Rochoux et al 
2014a) and a state estimation (SE) approach in which the control variables are the spatial coordinates 
of the fire front (Rochoux et al 2014b). This study presents the extension of the FIREFLY-based data-
driven wildfire spread simulator to problems with complex terrain topography; the formulation of the 
PE-/SE-based DA strategies is not affected by the increasing complexity of the wildfire spread model. 
The paper is organized as follows. The data-driven wildfire spread model (including the fire spread 
model with complex terrain topography and the DA algorithms) is presented in Section 2; examples 
for each component of the data-driven simulator are also provided. Its performance is evaluated for 
synthetic DA experiments in Section 3.  
 
2. Methodology: Data-driven wildfire spread model 
 
As any current operational fire spread simulator, FIREFLY adopts a regional-scale perspective. This 
implies that wildfires are assumed to feature a front-like geometry at scales ranging from a few tens of 
meters up to several kilometers and may be described as a line that propagates normal to itself into 
unburnt vegetation and over complex topography, at a ROS denoted by 3D. 
 

2.1. Forward model: Fire spread model 
 Geometrical considerations 

A rectangular Cartesian coordinate system (x0, y0, z0) is introduced to geolocalize the propagation of 
the fire front over complex terrain topography. (x0, y0) represents the horizontal plane, with the x0-axis 
pointing towards the East direction and the y0-axis pointing towards the North direction; the z0-axis is 
the vertical direction (z0 = 0 m represents the horizontal plane, where the terrain elevation h is zero). 
The reference frame is illustrated in Figure 1a.  
Based on Sharples (2008) and Lautenberger (2013), the terrain topography is locally characterized in 
FIREFLY by a pair of angles noted (αa, αsl), see Figure 1a. αa [°] is the terrain aspect angle indicating 
the downslope direction and is defined in a clockwise representation, where 0° indicates the North 
direction (i.e. the y0-direction). αsl  [°] is the terrain slope angle, taking values between 0° (flat terrain) 
and 90° (vertical wall). The direction from which the wind blows is noted αw [°] and is defined in a 
clockwise representation, where 0° indicates the North direction, see Figure 1b. In this framework, the 
direction of fire propagation is noted αfr [°]. 
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(a)       (b) 

Figure 1. Formalism to include terrain topography in FIREFLY. (a) Three-dimensional reference frames, where (x0, 
y0) represents the horizontal plane, where αa represents the aspect angle direction (i.e. the downslope direction) and 

where αsl represents the terrain slope angle; the blue and red planes are perpendicular. (b) Two-dimensional 
horizontal plane (x0, y0) with the aspect angle direction αa and the wind direction angle αw. 

The pair of local parameters (αa, αsl) can be retrieved from altimetry elevation data h ≡ h(x0, y0) as 
follows (Vico and Porporato 2009, Emery et al 2013): 
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In FIREFLY, the terrain elevation h corresponds to input data that are interpolated at each grid point 
of the computational domain. The calculation of its gradient is performed through a classical centered 
finite difference scheme.  
 

 Extension of the Rothermel’s model to wind and slope effects 
The original Rothermel’s ROS model (noted Γ1D) that was developed for one-dimensional upslope 
and/or upwind fire propagation is of the following form: 
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where Γ0 [m s-1] is the no-wind no-slope ROS, and where the 1-D coefficients Φw
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*(αsl) represent the wind and slope correction coefficients to account for the additional effects of 
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wind and slope on the propagating speed of the head fire. Note that the wind correction coefficient 
depends on the surface wind velocity vector noted uw [m s-1], which can be provided for instance by 
meteorological forecasts. 
Following choices made by Lautenberger (2013), a modification of the wind and slope contributions 
to the Rothermel-based ROS is introduced to account for wildfire spread in other directions than the 
uphill/upwind direction. The 2-D wind and slope correction coefficients in the modified Rothermel’s 
formulation are noted Φw and Φsl, respectively. The modification of the slope correction coefficient Φsl 
relies on the following assumptions: (1) when the fire propagates in the upslope direction (i.e. αfr = αa 

+ 180°), the slope contribution to the ROS is maximum (i.e. Φsl = Φsl
*); (2) if the fire propagation 

occurs in the normal direction to upslope or downslope (i.e. αfr = αa ± 90°), the slope does not contribute 
to the fire front propagation; and (3) if the fire propagates in the downslope direction such that αfr ∈ 

[αa - 90°, αa +90°], the ROS is forced to Γ0, meaning that the fire cannot propagate at a lower ROS than 
the no-slope no-wind Γ0. The modification of the wind correction coefficient Φw relies on similar 
arguments. Thus, the Rothermel’s formulation of the wind- and slope-aided ROS (noted Γ3D) becomes: 
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with the following expressions for αfr ∉ [αa - 90°, αa +90°]: 
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Γ3D corresponds here to the evaluation of the ROS in the slope frame (see Figure 1a); this value is 
projected onto the reference frame (x0, y0, z0) to obtain the ROS Γ2D required by the FIREFLY level-
set solver to propagate the fire front on the horizontal plane (x0, y0) along its normal direction nfr. Based 
on geometrical considerations, the projected ROS Γ2D reads: 
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The derivation of the formulation in Eq. (7) can be found in Emery et al (2013). Figure 2 shows the 
variations of the slope-aided ROS Γ2D evaluated using Eq. (7), with respect to the slope angle αsl 
(horizontal axis) for different aspect angles αa (colorbar) varying between 0° (dark-blue-plain line) and 
90° (brown-plain line). For αa = 0°, the fire spreads in the upslope direction with a ROS reaching up 
to 1 m/s for a slope angle αsl above 65°; the effect of the slope is considerable since the ROS Γ2D can 
be multiplied by a factor up to 25 compared to the no-slope no-wind ROS Γ0 = 0.048 m/s. On the 
contrary, for αa = 90°, the fire propagates in the transverse direction to the slope, implying that the 
slope does not modify the ROS and Γ2D = Γ0 = 0.048 m/s. 
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Figure 2. Slope-aided ROS Γ2D with respect to the terrain slope angle αsl (horizontal axis) for different values of the 
terrain aspect angle αa (represented by the colorbar) for a no-wind plane configuration and Γ0 = 0.048 m/s. 

 
 Level-set solver 

FIREFLY tracks the time-evolving fire front location on the horizontal plane (x0, y0) using a level-set-
based solver, see Figure 3. A progress variable c ≡ c(x,y,t) is introduced as a flame marker: c = 0 in 
unburnt vegetation, c = 1 in burnt vegetation, and the contour line cfr = 0.5 is identified as the flame 
front.  
 

 
            (a)        (b) 

Figure 3. Schematic of FIREFLY. (a) Propagation of the contour line cfr = 0.5 onto the horizontal plane (x0, y0), Γ2D 
measures the local ROS of the fire along the normal direction to the front nfr (defined by the direction angle of fire 

propagation αfr). (b) Profile of the spatial variations of the progress variable c across the fire front, (xi, yi) 
representing the location of the ith fire front marker.  

The progress variable field c is calculated as a solution of the propagation equation:  
 
 c

t
 

2D
c ,          (8) 

 
where Γ2D ≡ Γ2D(uw, αsl, Mv, Σv, βv, δv, …) calculated by Eq. (7) is defined along the local normal 
direction to the fire front nfr = - c/c (see Figure 3) and depends on the local environmental 
conditions such as the biomass fuel moisture content Mv [-], the biomass fuel particle surface-to-
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volume ratio Σv [m-1], the biomass fuel packing ratio βv [-] and the biomass fuel layer thickness δv [m]. 
Equation (8) is solved by using a second-order Runge-Kutta scheme for time-integration and a second-
order total variation diminishing scheme with a Superbee slope limiter for spatial discretization, 
following choices made by Rehm and McDermott (2009). Convergence of the numerical method was 
demonstrated in Rochoux (2014).  
 

 Reconstruction of the simulated fire front 
The instantaneous location of the fire front at time t is extracted by geolocalizing the contour line 
cfr = 0.5 and satisfies: c(xi, yi, t) = cfr for every marker i of the front, with 1   i  Nfr (Nfr being the total 
number of simulated markers along the fireline). Two steps are required for this reconstruction of the 
simulated fire front. First, the algorithm extracts the contour line cfr = 0.5 from the two-dimensional 
progress variable c with respect to the computational grid resolution on the horizontal plane (x0, y0) in 
FIREFLY. Second, this algorithm discretizes the contour line cfr = 0.5 with a fixed number (Nfr) of 
equally-spaced markers. Thus, the outputs of FIREFLY are the two-dimensional coordinates of the Nfr 
front markers. Further technical details on the contour line algorithm are provided in Rochoux (2014).  
 

 Examples of fire propagation over terrain topography 
Two synthetic test cases are presented to illustrate the effects of non-uniform terrain topography on 
the fire front location as simulated by FIREFLY. This terrain topography corresponds to first, an 
inclined plane and second, a terrain elevation h(x0, y0) typical of mountainous regions. 
 
Inclined plane. The fire spread is simulated for a uniform biomass fuel characterized by δv = 1 m, Mv 
= 15 % and Σv = 11500 m-1. The terrain is a uniform inclined plane, tilted by αsl = 15° with respect to 
the horizontal plane, whose aspect angle is αa = 225° and whose dimensions are 600 m × 600 m (with 
a mesh step size ∆x = ∆y = 1 m). The initial condition is described by a circular front centered at 
(x0 = 300 m, y0 = 300 m) and of radius r0 = 5 m; there is no external flow (uw = 0). FIREFLY is 
integrated during 1000 s (with a time step ∆t = 0.5 s). Results presented in Figure 4 show that the slope 
induces a constant propagation in the upslope direction, while the spread at the back of the fire remains 
very limited. The effective simulated ROS of the head of the fire is equal to 0.264 m s-1, which is 
consistent with the theoretical value 0.261 m s-1 provided by the 0-D Rothermel’s model Γ1D (see Eq. 
3). The no-slope ROS Γ0 is equal to 0.068 m s-1; the slope induces a propagation that is 4 times faster 
than in a no-slope configuration. 

 
         (a)             (b) 

Figure 4. Time-evolving location of the simulated fire fronts at 100 s intervals on a slope plane with the aspect angle 
αa = 225° (a) Three-dimensional representation. (b) Projected representation onto the horizontal plane (x0, y0). 

Mountainous region. A simulation of wildfire spread induced by complex terrain topography is 
performed for moderate wind conditions (0.75 m s-1, 315°); the biomass fuel is uniformly-distributed 
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over the 200 m x 200 m field, with δv = 1 m, Mv = 20 % and Σv = 10000 m-1. The initial condition is 
described by a circular front centered at (x0 = 100 m, y0 = 100 m) and of radius r0 = 5 m. FIREFLY is 
integrated during 1500 s. Figure 5 illustrates the growth of the burnt area over time (at 300 s time 
intervals). Even though the validation of FIREFLY for the treatment of the wind and slope effects 
remains to be performed against real-world wildfire events, this simulation is consistent with the main 
features of wildfire spread: the largest ROS is obtained in the upslope direction (the effect of terrain 
elevation on the fireline behavior is high compared to the effect of moderate wind, partly due to the 
high terrain elevation in one corner of the domain).  

 

Figure 5. Growth of the burnt area from t = 0 s to t = 1500 s, simulated with FIREFLY over a complex terrain 
topography; moderate horizontal wind conditions (0.75 m s-1, 315°); 

2.2. Data assimilation algorithms: parameter estimation versus state estimation 
 

 Model counterparts of the observations 
The correction provided by the DA algorithms relies on a comparison between the (FIREFLY-based) 
predicted and observed fire front locations at time t. The predicted fire front is a high-resolution 
discretized line described by a set of Nfr markers. Since observations of the fire front position are likely 
to be provided with a much coarser resolution and since they may cover only a fraction of the fire front 
perimeter, the observed fire front is a discretized line with a set of Nfr

o markers, with Nfr
o much lower 

than Nfr. In the following, we assume for simplicity that Nfr
o = (Nfr / r) where r is an integer taking 

values much larger than 1. A selection operator is applied to the simulated fire front in order to pair a 
subset of Nfr

o markers along the simulated fire front with the Nfr
o markers along the observation fire 

front, associating each marker of the observation fire front with its closest neighbor along the simulated 
fire front.  
 

 Ensemble Kalman filter 
For both parameter estimation (PE) and state estimation (SE) approaches, the EnKF algorithm is 
sequentially applied; each assimilation cycle consists of two successive steps (see Figure 6): (1) a 
prediction step (forecast) in which the system is evolved from time (t-1) until time t (the next 
observation time) through an integration of the FIREFLY fire spread model for a large sample Ne of 
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control variables, each realization leading to a new prediction of the fire front location; (2) an update 
step (analysis) in which new observations are considered at the analysis time t and the ensemble of 
forecast realizations is modified consistently with the observations in order to reduce uncertainties in 
FIREFLY predictions. The new ensemble of Ne realizations is obtained by the application of the 
classical Kalman filter equation, assuming that the errors on the control variables and on the 
observations follow Gaussian probability density functions. One advantage of the EnKF algorithm is 
that the mapping between the control variables and the observation space is estimated stochastically. 
Thus, the EnKF algorithm is able to handle model non-linearities.  
In the PE approach, the control vector includes the n input parameters of the Rothermel-based ROS 
model that are subject to uncertainties and to which FIREFLY is sensitive (Rochoux et al. 2014a). In 
the SE approach, the control vector is made of the coordinates of the Nfr front markers along the 
simulated fire front such that n = 2Nfr (Rochoux et al. 2014b). The main difference between PE and 
SE approaches relies on the definition of the observation operator. In the SE approach, the observation 
operator is limited to the selection operator introduced in Section 2.2.1. Since in the PE approach the 
observation operator maps the environmental parameters onto the model counterparts of the 
observations, it also includes the integration of the FIREFLY fire spread model (this aspect emphasizes 
the need for a DA approach that accounts for model non-linearities).  
 

 

Figure 6. DA flowchart for PE and SE approaches over one assimilation cycle based on the OpenPALM dynamic 
coupler (www.cerfacs.fr/globc/PALM_WEB/); control variables are colored in blue. 

 Validation of the ensemble Kalman filter 
We present results from a validation test in which observations are taken from an experimental 
database corresponding to a controlled grassland fire (personal communication and unpublished data). 
This validation test corresponds to a real reduced-scale (4 m x 4 m), flat, open-field grassland lot 
burning in which the ROS takes values on the order of 1 cm s-1 under moderate wind conditions. The 
properties of the grass are (approximately) known: δv = 0.08 m, Mv = 22 % and Σv = 11500 m-1. The 
mean wind conditions are also approximately known: uw = 1 m/s and αw = 307 degrees. The fire spread 
is recorded during 350 s using a thermal-infrared camera; the fire front (represented by Nfr

o = 40 
markers) is defined at the 600 K iso-temperature contour at 14 s intervals, from t0 = 50 s to t4 = 106 s. 
In the PE approach, 4 parameters are used as control variables: the fuel moisture content and particle 
surface-to-volume ratio as well as the wind magnitude and direction angle. These parameters are varied 
around mean values and with prescribed uncertainties; the EnKF ensemble contains Ne = 1000 
members. In the SE approach, the control variables are the spatial coordinates of the discretized fire 
front. An ensemble of Ne = 100 members is produced based on assumed uncertainties in the input 
parameters of the ROS model (i.e., the fuel depth, moisture content and particle surface-to-volume 
ratio as well as the wind magnitude and direction angle) as well as assumed uncertainties in the initial 
fire location at t0. 
Figure 7a presents the averaged fire front position at time t4 = 106 s, using the PE and SE ensembles 
as predicted from a numerical integration of FIREFLY, and with an EnKF update performed at time 
t3 = 92 s. The numerical integration is performed Ne times for all members of the EnKF ensemble but 
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only the mean predictions are plotted in Figure 7a. It is shown that the mean forecast significantly 
underestimates the observed ROS. In contrast, Figure 7b shows that the mean analysis (i.e. a simulation 
with an EnKF update at current time t4) successfully reduces the distance between model predictions 
and observations; this result is achieved by an adjustment of the ROS model parameters in the PE 
approach or directly of the fire front position in the SE approach. 
 

(a)          (b) 

Figure 7. Comparison between simulated (lines) and observed (symbols) front positions at time t4 = 106 s on the 
horizontal plane (x0, y0). The simulated front position is the mean position calculated as the average of the EnKF 

ensemble; dashed lines (solid lines) correspond to the PE-based (SE-based) simulations. (a) Forecast (with an EnKF 
update at t3 = 92 s). (b) Analysis (with an EnKF update at t4 = 106 s). 

In spite of the quality of the PE-based or SE-based correction, the mean forecast, while still 
significantly more accurate than the simulations without DA, remains limited. The mean predictions 
presented in Figure 7a have the benefits of an EnKF update performed at earlier time t3; however, 
some of these benefits are lost at time t4 due to the limited persistence of the initial condition for the 
SE-based forecast and due to the temporal variability of the errors in the environmental conditions for 
the PE-based forecast. We find that in this configuration, the PE algorithm provides better forecasts 
than the SE algorithm but this ranking is problem-dependent. While a DA approach provides excellent 
forecasting performance at short lead-times, the assimilation frequency (i.e., frequency at which the 
analysis is renewed by observations) needs to be adjusted to the persistence of the initial condition 
and/or to the temporal variability of the errors in the environmental conditions.  
 
3. Evaluation of the performance of the data-driven simulator for complex terrain topography 

 
An anisotropic case of wildfire spread subject to moderate wind conditions is considered for the 
complex terrain topography illustrated in Figure 5 for a deterministic run. In the present DA test, 
observations are synthetically generated using a similar deterministic run over the time window [0; 750 
s], called true solution of the FIREFLY fire spread model, with specified values of the environmental 
conditions (referred to as the true parameters in Table 1); random errors characterized by a 1-m 
standard deviation (STD) are then added to the true solution to obtain the location of the observation 
markers (Nfr

o = Nfr = 100) at time 750 s (there is a single observation time over [0; 750 s]). Since this 
observation error STD is low relatively to the size of the fireline perimeter, the objective here is to 
evaluate the ability of the EnKF algorithm to retrieve the true location of the fire front.  
An ensemble of Ne = 320 forecasts is produced over the time window [0; 750 s], based on assumed 
uncertainties in a subset of ROS model parameters, specifically in the fuel layer depth δv, the fuel 
moisture content Mv, the fuel particle surface-to-volume ratio Σv and the wind properties (uw, αw). 
Thus, uncertainties are due to variations in 5 parameters, whose mean and STD are presented in 
Table 1. Note that the perturbed parameters remain spatially-uniform for each ensemble member. Note 
also that this large ensemble is necessary to accurately describe the spatial variability in the errors in 
the SE approach as well as to dissociate the effects of each control parameter on the fireline position 
in the PE approach. Figure 8a presents a comparison between the true and forecast fire front locations 



 Chapter 1 - Fire Behaviour and Modelling
 

 Advances in Forest Fire Research – Page 26 
 

at time t = 750 s (the forecast estimates between PE and SE approaches are equivalent). Due to 
uncertainties in the ROS model parameters and the presence of heterogeneous terrain topography, the 
shape of the simulated fire fronts significantly varies between the members (with a burnt area varying 
between 500 and 10000 m2).  
The EnKF update is performed at time 750 s, either for the PE approach or for the SE approach. While 
the SE approach leads to a direct adjustment of the fire front location, the PE approach works by an 
adjustment of the ROS model parameters; the 5 perturbed parameters (δv, Mv, Σv, uw, αw) are used as 
control variables. Figure 8b compares the mean analysis estimate obtained at the same time 750 s using 
a PE-based EnKF update (red dashed line) and a SE-based EnKF update (red solid line). These analysis 
estimates are compared to observations (black crosses) and to the mean forecast estimate (blue solid 
line). For both PE and SE approaches, the analysis estimates feature a much reduced scatter around 
the true location of the fire front than the ensemble of forecast estimates. At time 750 s, the mean 
distance between the (PE-/SE-based) mean ensemble estimate and the observations is reduced by a 
factor of at least 20. Thus, both PE and SE approaches are able to retrieve an accurate estimation of 
the fire front location, even though the prior information is subject to high levels of uncertainties and 
the terrain topography is complex. Note that as for the real case presented in Figure 7, the SE approach 
is more effective at retrieving the topology of the front at the analysis time than the PE approach; the 
latter provides valuable information on the input parameters to forecast the front at future lead-times 
(see Rochoux et al. 2014a, 2014b for further details).  

Table 1. Properties of the ensemble forecast in the control space; anisotropic OSSE test 

 True Forecast (mean/STD) PE-based analysis (mean/STD) 
δv 0.30 m 0.20 m 0.10 m 0.26 m 0.06 m 
Mv 10 % 14.0 % 4.0 % 11.7 % 3.6 % 
Σv 11500 m-1 10000 m-1 4000 m-1 13078 m-1 2436 m-1 
uw 0.75 m s-1 0.65 m s-1 0.20 m s-1 0.83 m s-1 0.15 m s-1 
αw 315° 315° 45° 288° 28° 

 
 
4. Conclusions 
 
This study presents a prototype data-driven wildfire simulator capable of correcting inaccurate 
predictions of the fire front position and of subsqequently providing an optimized forecast of the 
wildfire behavior over complex terrain topography. The simulator features a regional-scale wildfire 
spread model FIREFLY coupled with an EnKF-based data assimilation algorithm and a parameter 
estimation (PE) approach or a state estimation (SE) approach. The study assumes that observations of 
the fire front location are available at frequent times but possibly provide an inaccurate and incomplete 
description of the fire front. The results obtained for a controlled grassland fire indicate that the 
forecasting performance of a PE approach or a SE approach may be limited to short lead-times. Future 
plans include the development of a dual SE/PE approach that could partly overcome these limitations. 
The PE approach could be extended to the case of weak spatial variations of the spread-rate model 
parameters. Assuming that the errors on the parameters vary slowly in time, the PE-based correction 
can reasonably be used for forecast, thus allowing for mid- to long-term forecast. In addition, the SE 
correction could be used for short-term forecast in order to locally correct the shape of the fire front. 
Future plans also include the evaluation of the PE/SE-based estimation strategy for real-world 
regional-scale wildfire hazards, in order to design the observation requirements (in terms of spatial 
and temporal resolutions) to obtain reliable forecasts of wildfire spread. 
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(a) Forecast step at time 750 s 

 

.  

(b) Analysis step at time 750 s. 

Figure 8. Comparison between simulated (lines) and observed (symbols) front positions at time 750 s; single 
assimilation cycle. (a) Forecast step: comparison between the true front location (black solid line) and the ensemble of 
forecast estimates (blue dashed lines). Only a subset of the ensemble is shown here for clarity purposes (b). Analysis 

step: comparison between observations (black crosses) and the mean analysis estimate: the dashed line (the solid line) 
corresponds to the PE-based (SE-based) analysis (with an EnKF update at 750 s and starting from the same initial 
condition as the forecast at time 0). Only a subset of observation front markers is shown here for clarity purposes. 
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