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Abstract 
Advances in electronics, sensor technologies, embedded hardware and software are boosting the application 

scenarios of wireless sensor networks. Specifically, the incorporation of visual capabilities into the nodes means 

a milestone, and a challenge, in terms of the amount of information sensed and processed by these networks. 

The scarcity of resources – power, processing and memory – imposes strong restrictions on the vision hardware 

and algorithms suitable for implementation at the nodes. Both, hardware and algorithms must be adapted to the 

particular characteristics of the targeted application. This permits to achieve the required performance at lower 

energy and computational cost. We have followed this approach when addressing the detection of forest fires 

by means of wireless visual sensor networks. From the development of a smoke detection algorithm down to 

the design of a low-power smart imager, every step along the way has been influenced by the objective of 

reducing power consumption and computational resources as much as possible. Of course, reliability and 

robustness against false alarms have also been crucial requirements demanded by this specific application. All 

in all, we summarize in this paper our experience in this topic. In addition to a prototype vision system based 

on a full-custom smart imager, we also report results from a vision system based on ultra-low-power low-cost 

commercial imagers with a resolution of 30×30 pixels. Even for this small number of pixels, we have been able 

to detect smoke at around 100 meters away without false alarms. For such tiny images, smoke is simply a 

moving grey stain within a blurry scene, but it features a particular spatio-temporal dynamics. As described in 

the manuscript, the key point to succeed with so low resolution thus falls on the adequate encoding of that 

dynamics at algorithm level. 

 
Keywords: forest fires, surveillance systems, wireless sensor networks, automatic early detection, artificial 

vision, low-power sensors, vision algorithms.  

 

 

 Introduction 

 

Wireless Sensor Networks (WSNs) (Akyildiz et al. 2002) constitute an enabling technology for the 

paradigm of pervasive computing (Weiser 1991). One of the most representative application 

frameworks of this paradigm is environmental monitoring. Typical scenarios are precision agriculture 

(McCulloch et al. 2008), forest canopy analysis (Tolle et al. 2005), volcanic studies (Werner-Allen et 

al. 2006), meteorological station networks (Barrenetxea et al. 2008) etc. In all these cases, the network 

nodes incorporate particular sensing capabilities according to the requirements of the application 

considered. These capabilities share a common feature: they provide scalar measurements, e.g. 

temperature, humidity or wind speed. Moreover, the data sampling rate is usually low or moderate at 

most, leading to a reduced amount of information to be handled locally by the nodes. These conditions 

significantly change when it comes to the in-node implementation of multimedia sensing (Akyildiz et 

al. 2007). Specifically, the implementation of vision hardware at WSN nodes is not a trivial issue at 

all since the visual stimulus implies to deal with a massive flow of multidimensional information. 

Taking into account the very strict power budgets allocated to the nodes, the mere capture and 

digitization of an image sequence could represent a significant percentage of their energy consumption.  
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But the critical point arises just afterwards. On the one hand, the sequence could simply be transmitted 

for remote processing, affecting dramatically the scalability and bandwidth of the network. On the 

other hand, the node itself could deal with the image sequence by taking advantage of its processing 

capabilities. In this case, the nature of such processing is greatly influenced by the energy constraints, 

demanding new strategies which permit to reach the targeted result with the minimum possible power 

cost. 

Most WSN applications take a new dimension when imaging is added to the catalogue of in-node 

sensing capabilities. A clear example is wildfire monitoring. Image processing permits not only to 

monitor a certain area from the perspective of environmental conditions (Hefeeda 2007, Aslan et al. 

2012), but also to carry out visual inspection in order to perform early detection of smoke or flames 

(Fernández-Berni et al. 2012, Jakovcevic et al. 2013). At the moment, two fundamental intertwined 

challenges are hindering the commercial exploitation of vision-enabled WSNs performing fine-grain 

detection of forest fires: node cost and battery life. A scalable deployment of sensors across typical 

regions of interest for fine-grain detection, e.g. Wild-land Urban Interfaces (WUIs), demands a 

competitive cost per node, what in turn demands the use of standard technologies and reduced form 

factors. Maintenance also plays a key role in terms of system cost when hundreds of vision-enabled 

nodes are to be deployed. Frequent change of batteries directly impacts the commercial viability of the 

network. Rechargeable batteries making use of solar panels or other energy-scavenging devices could 

be a solution, but they significantly increase the node form factor and the cost. They also strongly 

influence the locations of the sensors, which must be adequate for the particular physical process 

collecting energy. These considerations again point to ultra-low power consumption as the primary 

requirement of vision-enabled WSNs, a fact that is emphasized for the specific application of forest 

fire detection.  

All in all, we summarize in this paper our contribution to the power-efficient implementation of vision 

hardware on wireless sensor network nodes targeting early detection of forest fires. This contribution 

is the result of long-term research. The tasks carried out range from devising a robust vision algorithm 

for smoke detection to the design and physical implementation of a power-efficient smart imager 

tailored to the characteristics of such an algorithm. By integrating this smart imager with a commercial 

wireless platform, we endowed the resulting system with vision capabilities and radio communication. 

Numerous tests were arranged in different natural scenarios in order to progressively tune all the 

parameters involved in the autonomous operation of this prototype node. We have also studied the 

performance of another platform based on commercial components, the so-called Silicam IGO 

(Silicam 2014). This smart camera includes two low-cost image sensors with a resolution of only 

30×30 pixels. Reliable smoke detection is still possible in real scenarios even for such a small amount 

of visual information. Indeed, the low resolution itself can be a helpful mechanism to filter out spurious 

data. Experimental results are presented for both systems.  

 

 Methodology 

 

The methodology followed to address early forest fire detection by vision-enabled WSNs comprises: 

i) the development of a reliable vision algorithm for smoke detection suitable for embedded systems, 

that is, featuring low computational load and undemanding memory requirements; ii) the recording of 

meaningful footage for algorithm parameter tuning and off-line tests; iii) the implementation of the 

algorithm on a commercial system for preliminary field tests;     iv) the design and implementation of 

a vision-enabled WSN node based on a full-custom smart imager; v) field tests in real scenarios; and 

vi) exploration of a new low-cost platform aiming at increasing power efficiency while preserving 

system reliability and robustness against false alarms. 
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 Vision algorithm for smoke detection 

The general conditions in which the visual inspection of a vegetation area will take place for the 

targeted system must be specified before addressing the design of a vision algorithm for smoke 

detection. The requirements for camera systems surveying extensive areas from very tall towers – the 

most usual scenario for automatic detection of forest fires – are very different to those of vision-

enabled nodes in a WSN. In our case, we are pursuing an arrangement of watching devices like the 

one depicted in Figure 1. This arrangement presents several advantages when compared to current 

automatic ground systems (Fernández-Berni et al. 2008). Basically, the objective is to exploit the low-

cost and low-power features of the nodes in order to increase the surveillance grain, what in principle 

should lead to a faster, more reliable and more robust detection. We therefore devised a vision 

algorithm assuming that each vision sensor surveys a small vegetation area located around it within a 

limited range (typically 1km).  

 

Figure 1. Proposed arrangement for visual detection of smoke. 

Most of the details of the algorithm were described in (Fernández-Berni et al. 2012). However, we 

have introduced some minor modifications that were applied for the tests realized after that publication. 

They have resulted in higher robustness against false alarms. The modifications consisted in: i) setting 

a longer time interval for the maximum detection period and for the confirmation phase, now encoded 

by 𝑇𝐷𝑀𝐴𝑋 = 60s and 𝑇𝐶 = 12s; ii) making the transition between the detection phase and the 

confirmation phase more flexible by not updating the background model as soon as the number of 

candidate bins goes below the corresponding threshold, as was the case for the previous version. The 

new flowchart of the algorithm is represented in Figure 2. These modifications are really interrelated 

since it is the larger values of 𝑇𝐷𝑀𝐴𝑋 and 𝑇𝐶 what allows for accommodating a wider spectrum of 

smoke dynamics without triggering false alarms.  

 

 Parameter tuning and off-line tests 

The discriminative power of the proposed algorithm is fundamentally supported by an adequate 

setting of the thresholds associated to its parameters. Such setting was performed by a thorough 

analysis of different sequences recorded in a natural environment, using commercial pyrotechnic 

material as smoke generator. We also recorded additional footage useful as a testbench and took a 

number of photographs in the variety of real scenarios we visited during all the field tests arranged the 

last few years. Most of this material is available for download at http://www.imse-cnm.csic.es/vmote 

(accessed 21 May 2014).  
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Figure 2. Flowchart of the algorithm. The modification related to the transition between the detection phase and the 

confirmation phase is highlighted by a red dashed rectangle. 
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 Field tests with a commercial system 

Once the algorithm was tuned for smoke detection, we programmed it into the EyeRIS v1.2, a 

commercial autonomous vision system built by AnaFocus Ltd (Seville, Spain, 

http://www.anafocus.com, accessed 22 May 2014). After a setup stage in the laboratory, two controlled 

burns of forest debris were surveyed by this system in order to test the algorithm in a real scenario. 

This test was also useful to learn and cope with typical operational problems of field experiments, 

permitting a better arrangement in following trials. All the details about these burns can be found in 

(Fernández-Berni et al. 2012). As a summary, smoke was detected without false alarms in both cases. 

In the first, the alarm was triggered at 2min 50s from ignition, whereas in the second, the alarm was 

delivered after 57 s. The most remarkable aspect about the results was the algorithm´s ability to filter 

motion other than smoke. 

 

 Design and implementation of a vision-enabled WSN node 

The successful tests with the EyeRIS system demonstrated the viability of reliable forest fire smoke 

detection with low-power low-resolution autonomous vision systems in a scenario like that of Figure 

1. But we wanted to go further concerning power efficiency and also to incorporate wireless 

communication to the sensor node. Based on our expertise on microelectronics, and specifically on 

vision sensor chips, we addressed the design and implementation of an ultra-low-power smart imager 

embedding different processing capabilities (Fernández-Berni et al. 2011-1). This chip met several 

academic purposes, one of which was to play a key role in the prototype vision-enabled WSN node 

we built, the so-called Wi-FLIP system (Fernández-Berni et al. 2011-2), shown in Figure 3. This 

system resulted from the integration of our smart imager and Imote2, a commercial WSN platform 

from MEMSIC Corporation (Andover, MA, www.memsic.com, accessed 22 May 2014). This 

platform is built around a microprocessor that can operate in a low-voltage low-frequency mode, hence 

allowing low-power operation. A ZigBee-compliant radio is also integrated into the Imote2 system. 

 

 

Figure 3. Wi-FLIP, a vision-enabled WSN node based on a focal-plane low-power image processor. 

 

 Field tests in real scenarios 

As for the EyeRIS system, we also arranged for some preliminary tests with the Wi-FLIP system after 

the corresponding setup in the laboratory. Such tests took place in the same public park where we 

recorded the smoke sequences enabling the algorithm parameter setting. Once the whole system was 

tuned during these preliminary trials, additional tests involving controlled burns of vegetation areas 

were carried out in collaboration with the Andalusian Forest Fire Suppression and Prevention Service 

(INFOCA). These tests, whose results will be described in the next section, generated alarm signals as 

an outcome. The alarms were wirelessly sent to a base station located within a range of 30m. Also 

images were sparsely broadcast from Wi-FLIP since an alarm signal was triggered. This would permit 
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further visual checking from personnel supervising the network. Some of the scenarios where the field 

tests took place are depicted in Figure 4.  

 

  

  

Figure 4. Some of the scenarios where our field tests took place. 

 

 Exploration of a new ultra-low-power low-cost vision platform 

As stated in Section 1, node cost and battery life are currently hindering the commercial exploitation 

of vision-enabled WSNs for fine-grain detection of forest fires. The performance of the Wi-FLIP 

system has been remarkable as a first prototype, providing autonomous operation for ~10h powered 

by small commercial batteries. However, further steps must be given to reach much better performance 

figures at lower cost. In this context, we have had the possibility of running the algorithm on the images 

provided by the platform Silicam IGO (Silicam 2014). This is the first version of a commercial 

embedded vision system including, among other components, two grayscale 30×30-px image sensors 

and a radio module with 64 channels whose cost does not go beyond a few dollars. Indeed, the imagers 

are high-performance optical mouse sensors. A really competitive network node in economic terms 

can be built up from these extremely cheap modules. But the first step is to evaluate how the algorithm 

performs when being fed by so coarse images. This is what we have done during the realization of new 

field tests by making use of the Silicam IGO platform. A couple of snapshots of this system are shown 

in Figure 5.  
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Figure 5. Silicam IGO platform capturing images for on-site smoke detection. 

 

 Results 

 

This section reports the experimental results achieved from both the Wi-FLIP and the Silicam systems. 

Concerning Wi-FLIP, some results were already described in (Fernández-Berni et al. 2012) but we are 

gathering here those results together with the new ones obtained after that publication. A complete 

perspective of the Wi-FLIP performance is thus provided. 

 

 Wi-FLIP 

As mentioned in Section 2.5, the operation of Wi-FLIP was first tuned in the same public park where 

the video sequences for the algorithm settings were recorded. The setting up of these tests was 

complicated due to strong gusts of wind. Nevertheless, no false alarm was triggered during eight 

sequences of smoke generation and detection was successful in five of them. Smoke was not 

successfully detected in the others because, owing to the wind, the pyrotechnic material burnt out 

before it had entered the field of view of Wi-FLIP sufficiently to be registered.  

The next test consisted in surveying the prescribed burning of a 95×20-m2 area of vegetation in a public 

forest in collaboration with INFOCA. This area was mechanically divided into three zones of similar 

sizes according to the density of vegetation. Wi-FLIP was placed ~80m away and monitored all the 

activity occurring in it for over 2h. The first zone presented very sparse vegetation, generating very 

thin smoke that was not detected by Wi-FLIP. However, successful detection took place for the second 

and third zones. A first alarm was triggered 5min 28s after ignition for the second zone whereas it took 

3min 29s to trigger an alarm for the third zone. No false positives were triggered either before or after 

the prescribed burn, despite the fact that many people and vehicles were moving around.  

Finally, a new test similar to the just described was arranged in a different location of the same public 

forest. In this case, the operation conditions were harder. To start with, the wireless vision system was 

placed ~200m away from the prescribed burning. Fast cloud motion was constantly changing the 

illumination conditions. The motion of people and vehicles was even more intense than for the 

previous test. The surveillance period was ~2h. Two false alarms were triggered during this interval. 

The first one was caused by clouds that entered the field of view of Wi-FLIP rapidly. The second one 

was generated by a sudden change of illumination. Despite these false alarms, the algorithm was 

capable of filtering out most of the constant activity taking place in the scene other than smoke. 

Detection was successful for the three zones of the prescribed area progressively burnt. The detection 

time from ignition was always below 8min: 3min 40s for the first zone, 5min 4s for the second one 

and 7min 26s for the last zone. The background model just before starting to survey the third controlled 

burn along with the foreground segmentation of smoke at the detection instant and the first image sent 

via radio are depicted in Figure 6. It can be seen that some false candidate bins were segmented at the 
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detection instant. However, it did not prevent the fire from being detected. We have summarized the 

experimental results achieved with Wi-FLIP in Table I.  

 

   

Figure 6. Initial background (left), foreground segmentation (center) and image sent via radio by Wi-FLIP (right) 

during one of the field tests carried out. 

 

Table I – Summary of the experimental results achieved with Wi-FLIP. 

Test#-Location 
Smoke  

source 

Surveillance 

period 

True  

positives 

False  

positives 

False 

negatives 

Detection time 

(distance) 

#1-Public park Pyrotechnic ~20m 5 0 3 
43s max 

(~100m) 

#2-Public forest 
Controlled 

burns 
~2h 30m 2 0 1 

5m 28s max 

(~80m) 

#3-Public forest 
Controlled 

burns 
~2h 3 2 0 

7m 26s max 

(~200m) 

 

 

 Silicam 

We also arranged for a first set of field trials with Silicam in a public park. Pyrotechnic material was 

again used as smoke source. It was burnt out within distances between ~50m and ~100m with respect 

to the vision system. Only one of the imagers of Silicam was used. No false alarm was triggered during 

the seven smoke sequences analysed at four different locations. There was only one false negative due 

to lack of contrast of the generated smoke against the background. Successful detection was achieved 

for the other six sequences. The background model at the detection instant along with the captured 

image and foreground segmentation at that same moment for one of these sequences are depicted in 

Figure 7.  

A controlled burn in a public forest could be surveyed with Silicam too. However, the arrangements 

for this test were far from ideal. First of all, the vegetation to be burnt was sparse and relatively damp, 

generating thin smoke. The characteristics of the surroundings were not suitable either for adequate 

surveillance: tall trees prevent the thin smoke arising from the burn from being detected from higher 

locations. The trees also caused high illumination contrast in the visual scene, making the detection 

more challenging. We had to place Silicam very close to the ignition points, what at least permitted to 

confirm once again the robustness of the algorithm against false alarms: there was only one throughout 

the over 2h of visual inspection. Detection was successful in three of the sequences analysed. 

Concerning false negatives, we consider that the smoke was thick enough to have being detected in 

other three sequences. One of the successful detections is shown in Figure 8. A couple of photographs 

taken during the realization of this test are included in Figure 9. The results achieved with Silicam are 

summarized in Table II.  
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Figure 7. Background model (left), captured image (center) and foreground segmentation (right) just at the detection 

instant of smoke from pyrotechnic material with Silicam. 

 

   

Figure 8. Background model (left), captured image (center) and foreground segmentation (right) just at the detection 

instant of smoke from controlled burn with Silicam. 

 

  

Figure 9. Snapshots taken during the controlled burn surveyed by Silicam. 
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Table II – Summary of the experimental results achieved with Silicam. 

Test#-Location 
Smoke  

source 

Surveillance 

period 

True  

positives 

False  

positives 

False 

negatives 

Detection time 

(distance) 

#1-Public park Pyrotechnic ~45m 6 0 1 
51s max 

(~100m) 

#2-Public forest 
Controlled 

burns 
~2h 15m 3 1 3 

4m 7s max 

(~30m) 

 

 Conclusions 

 

Fine-grain detection of forest fires is technologically possible nowadays. State-of-the-art vision-

enabled WSN nodes can be deployed throughout a region of interest to locally survey small vegetation 

areas and wirelessly send alarm messages by multi-hopping. However, operational costs still seem to 

be very high for a dense deployment. Node cost and battery life demand new strategies that permit to 

reduce the former while increasing the latter. In this paper, we have described our contribution to 

achieve such objective. Tight integration of the different system components arises as a major 

requirement. Among these components, the vision algorithm for detection stands out as the primary 

demander of computational power and hence of power consumption. The algorithm proposed in this 

manuscript features low computational load and can also cope with very low resolution images. The 

results from the numerous field tests presented suggest pushing in this direction by further algorithm 

tuning. To this end, the feedback provided by real deployments in different locations and 

circumstances is mandatory, according to our experience. Ultra-low power consumption and 

miniaturization should ultimately lead to the seamless integration of vision within the catalogue of 

sensing capabilities available for WSNs.  
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