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Abstract 
Maps of the number, size, and species of trees in forests across the United States are desirable for a number of 

applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a 

spatial tree-level dataset, or “tree list”, is a necessity. FVS is widely used at the stand level for simulating fire 

effects on tree mortality, carbon, and biomass, but uses at the landscape level are limited by lack of availability 

of forest inventory data for large contiguous areas. Detailed mapping of trees across large areas is not feasible 

with current technologies, but statistical methods for matching forest plot data with biophysical characteristics 

of the landscape offer a practical means to populate landscapes with a limited set of forest plot inventory data. 

We used a modified random forests approach, with Landfire vegetation and biophysical predictors at 30m grid 

resolution. In essence, the random forests method creates a “forest” of decision trees in order to choose the 

forest plot with the best statistical match for each grid cell in the landscape. Landfire data was used in this 

project because is publicly available, offers seamless coverage of variables needed for fire models, and is 

consistent with other datasets, including burn probabilities and flame length probabilities generated for the 

continental US by Fire Program Analysis (FPA). We used the imputed forest plot data to generate a map of 

forest cover and height as well as existing vegetation group for a study area in eastern Oregon, and examined 

correlations with Landfire data. The results showed good correspondence between the two data sets (84-97% 

within-class agreement, depending on the variable). In future research, the new imputed grid of inventory data 

will be used for landscape simulation studies to determine risk to terrestrial carbon resources from wildfire as 

well as to investigate the effect of fuel treatments on burn probability and fire sizes.  
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 Introduction 

  

For many research applications ranging from estimation of terrestrial carbon resources to the impact 

of fuel treatment projects on wildfire propagation, to name a few, it is desirable to know the location, 

size, and species of each tree on the landscape. However, such a mapping effort is not feasible with 

current technologies. LiDAR and similar technologies may make such a tree-level map a reality in 

coming years, but in the interim, various statistical efforts can produce spatial models, known as “tree 

lists”, suitable for a wide range of research applications. 

To this end, a number of statistical methods have been evaluated in the literature, ranging from gradient 

nearest neighbour imputation (GNN), linear models (LM), classification and regression trees (CART), 

kriging, universal kriging (UK) and most similar neighbour (MSN) (Moeur and Stage 1995; Pierce et 

al. 2009). Among these, Pierce et al. (2009) found GNN performed best for forest structure variables 

in Oregon, while LMs and UK demonstrated stronger performance for both forest structure and canopy 

variables in Washington and California. Drury and Herynk (2011) produced a national tree list by 

stratifying plot data by existing vegetation type, biophysical setting, succession class, and canopy bulk  
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density. Because this method generally left several potential matches for each grid cell on the 

landscape, and because the purpose of the tree list was to model tree mortality from fire, they then 

identified the median bark thickness for each plot, and chose the plot with the median of the median 

bark thickness to assign. 

This project had several specific requirements that precluded use of most of these methods. For this 

project, we required our tree list to be consistent with two already existing datasets. The Landfire 

project provides over 20 national geo-spatial layers, including topographic, fuel, and vegetation layers, 

on 30m grids (www.landfire.gov). These layers, in turn, are used as inputs to Fire Program Analysis 

(FPA), which runs national-level wildfire simulations to output burn probability and flame length 

probabilities on a 270m grid, accompanied by a set of modelled fire perimeters. Therefore, we 

leveraged the Landfire dataset as inputs to our tree list, to ensure consistency with that dataset as well 

as the FPA outputs. In order to model forest type, introduction of a categorical variable, existing 

vegetation group, into our model along with numeric variables was necessary. That limited the set of 

possible methodologies to classification trees. We chose random forests as our methodology, since it 

leverages a “forest” of classification trees in order to produce high accuracies and model complex 

interactions among predictor variables, two notable strengths of this methodology over other statistical 

classifiers (Cutler et al. 2007). The random forests method as used here in essence evaluates a set of 

forest plots, and identifies the best-matching plot for each grid cell on the landscape. Our methodology 

is distinct from that of Pierce et al. (2009) in that it has the capacity to use categorical variables and is 

consistent with Landfire and FPA data. Several important differences exist between our methodology 

and that of Drury and Herynk (2011) as well: 1) we limited our data to a single set of nationally 

consistent plot data, whereas they obtained a variety of fixed- and variable-plot designs from multiple 

agencies, 2) since tree mortality was not the primary variable of interest, we did not use it as a predictor, 

and 3) we wanted to identify a single best matching plot for each point on the landscape rather than 

utilizing the median plot in a class, retaining more variability on the landscape. 

Here, we demonstrate high model accuracies for a random forests imputation run on an approximately 

40,000 km2 area of forest in the western U.S., indicating the output would be suitable for a wide range 

of research applications. 

 

 Methods 

 

In order to test and refine our methodology, we chose a Landfire zone, Zone 9, which lies mainly in 

eastern Oregon, as our study area (Figure 1). The zone contains large forested areas, amounting to 

about 25% of the total area of the zone, or approximately 40,000 km2. 

In this random forests imputation, a set of reference observations was imputed to a set of target points 

(Crookston and Finley 2008). The reference observations consisted of a set of forest plot data acquired 

from the US Forest Service’s Forest Inventory Analysis (FIA) program. Beginning in 1999, FIA has 

been using a standardized plot design to conduct forest surveys across the US (O'Connell et al. 2014). 

Among the variables collected at these plots that we utilized in the imputation are: elevation, slope, 

aspect, latitude, and longitude. The Landfire program calculates additional variables needed for the 

imputation and stores them in their Landfire Reference Database (LFRDB), including forest height, 

forest cover, and existing vegetation group (EVG) computed from a classification method devised by 

NatureServe (2009) for Landfire. We derived additional biophysical variables via overlays of plot 

locations with gridded data from the Landfire project for photosynthetically active radiation, 

precipitation, relative humidity, maximum temperature, minimum temperature, and vapour pressure 

deficit. The target points in this study consist of a grid of 30m pixels that comprise the Landfire dataset. 

So, in essence, we use random forests to find the best matching FIA plot for each 30m pixel, imputing 

an FIA plot number to each pixel. 

http://www.landfire.gov/
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Figure 1. Location of the study area, Landfire Zone 9, in the western United States. 

For this project, we retained only FIA plots that utilized the national design, were single condition 

(meaning they did not cross ownership boundaries or major vegetation types), and appeared in the 

LFRDB. Thus, we began with 15,333 plots in the western half of the continental United States, and 

then created a subset consisting only of the plots with EVGs appearing in Zone 9. Then, we formed 

the random forest model using the yaImpute package in the statistical program R. To do this, we used 

250 total decision trees to predict tree height, tree cover, and EVG for each plot. To predict these, we 

used the following predictors: latitude, longitude, tree cover, tree height, elevation, slope, EVG, PAR 

(photosynthetically active radiation), precipitation, relative humidity, maximum temperature, 

minimum temperature, VPD (vapour pressure deficit), cosine of aspect (northing), and sine of aspect 

(easting). Notice that the variables we wish to predict also appear as predictors. This may appear odd, 

but the reason we do this is that the objective with random forest imputation is to build a model that 

assigns a set of predictor values to a plot associated with the response variables. Accuracy in the 

response variables can be heightened by also including them as predictors. The random forest method 

involves building many classification trees (in this case, 83 for each response variable, adding to the 

total 249). Each tree is formed using a subset of the plots, and the remainder (referred to as the out-of-

bag observations) are set aside to assess accuracy. As Cutler et al. (2007) eloquently describes it, 

“Observations in the original data set that do not occur in a bootstrap sample are called out-of-bag 

observations. A classification tree is fit to each bootstrap sample, but at each node, only a small number 

of randomly selected variables (e.g., the square root of the number of variables) are available for binary 

partitioning.” Binary partitioning continues until the variance in each bucket cannot be reduced 

significantly, or until further divisions cannot be made without reducing the number of observations 

in a bucket to less than 5. Each “fully grown” decision tree is used to predict the out-of-bag 

observations. “The predicted class of an observation is calculated by the majority vote of the out-of-

bag-predictions for that observation, with ties split randomly” (Cutler et al. 2007). 

We can obtain an overall accuracy of the model by taking the out-of-bag misclassification for each 

tree and considering them in aggregate to assess the overall quality of the forest model. In this case, 
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the out-of-bag error rates for Zone 9 were 6.99%, 1.79%, and 0.897% for forest cover, forest height, 

and EVG respectively, an indication of high model accuracy. 

Once the forest of decision trees is in hand, we can impute new target observations to determine which 

reference plots are most closely associated with the targets (pixels, in this case). Our dataset consisted 

of 44,138,635 forested pixels. The imputation is done by evaluating the target predictor variables for 

each pixel through each of the 3 sets of trees associated with each response variable. Then, the plot 

most frequently imputed amongst all 500 trees is considered the winner. Once we obtain this list of 

reference plots, we can build imagery of the variables of interest associated with each imputed plot. In 

this case, we output raster images of forest cover, forest height, existing vegetation group, and plot 

number. The plot number can be used to reference the number, size, and species of trees in each plot 

via a lookup table. 

Validation consisted of assessing within-class accuracy for the three response variables (forest cover, 

forest height, and existing vegetation group) using confusion matrices and the kappa statistic. Barplots 

were used to assess the proportion of pixels in each class in the target data versus the imputed data. 

 

 Results and Discussion 

 
Accuracies for imputed forest height were high. Landfire maps forest height in four classes: 0-5 m, 5-

10 m, 10-25 m, and greater than 25 m. The Landfire organization also computes the height of FIA 

forest plots in its LFRDB to tenths of a meter. We compared the height of each imputed plot to the 

height class mapped by Landfire for the corresponding pixel (Table 1). The resulting confusion matrix 

represents a type of accuracy assessment of the outputs. We do not assess the accuracy of the Landfire 

data itself, which has its own error rates, but we compute the accuracy of our imputation compared to 

the gridded target data. Within-class accuracy for forest height was 97% in Zone 9. The number of 

pixels in each height class compared quite favourably across the imputed plot data and the Landfire 

gridded target data (Figure 2). 

Table 1. Confusion matrix of forest height in meters in gridded Landfire data and imputed forest plot data. 

  Imputed plot    

   0-5m 5-10m 10-25m >25m Accuracy 

Gridded 0-5m 1,059,777 98,042 820 13 0.91 

Landfire 5-10m 47,313 7,842,084 6,227 63 0.99 

 10-25m 852 66,957 23,609,236 107,949 0.99 

 >25m 316 2,734 1,100,876 10,195,377 0.90 

 Accuracy 0.96 0.98 0.96 0.99 0.97 
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Figure 2. Barplots comparing height class of imputed forest plot data and gridded Landfire reference data. Units of 

the y axis are numbers of pixels. 

The accuracy of the imputation was also high for forest cover. Forest cover is mapped in nine classes 

in Landfire (Table 2), with areas of tree cover less than 10% not considered forested. For FIA plots, 

forest cover is estimated to the nearest percent in the LFRDB. Overall accuracy for the zone was 86%, 

with within-class accuracy ranging from less than 1% in the two densest forest cover classes (80-89% 

and 90-100%) to 98% in a moderate cover class (30-39%). The proportion of cover classes compared 

favourably across the imputed forest plots and gridded target Landfire data (Figure 3). The largest 

discrepancies were in the sparsest cover class (10-19%), which was underestimated by the imputed 

plot data, and the 20-29% cover class, which was conversely overestimated by the imputed plot data. 

Forest cover greater than 60% was rare in the Landfire reference data. 

 

Table 2. Confusion matrix of forest cover in percent in gridded Landfire data and imputed forest plot data. 
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Figure 3. Barplots comparing forest cover class of imputed forest plot data and gridded Landfire target data. Units of 

the y axis are numbers of pixels. 

The third response variable in our study was existing vegetation group (EVG). There were 14 EVGs 

in Zone 9 (Table 3). EVG is mapped to the gridded target data by Landfire, and also assigned to FIA 

forest plots in the LFRDB. Within-class accuracy of EVG was 84% for the study area as a whole. 

Class proportions compared favourably across the gridded Landfire data and the imputed plot data, 

but the most common EVG classes tended to be somewhat over-represented in the imputed plot data 

(Figure 4). 

Table 3. Landfire Existing Vegetation Groups (EVGs) in zone 9, by numeric code and text description 

EVG 

Code EVG Description 

602 Aspen Forest, Woodland, and Parkland 

603 Aspen-Mixed Conifer Forest and Woodland 

614 Douglas-fir Forest and Woodland 

620 Juniper Woodland and Savanna 

621 Limber Pine Woodland 

622 Lodgepole Pine Forest and Woodland 

625 Douglas-Fir-Ponderosa Pine-Lodgepole Pine Forest and Woodland 

628 Mountain Mahogany Woodland and Shrubland 

630 Pinyon-Juniper Woodland 

631 Ponderosa Pine Forest and Woodland and Savanna 

635 Western Riparian Woodland and Shrubland 

639 Spruce-Fir Forest and Woodland 

640 Subalpine Woodland and Parkland 

643 Douglas-fir-Grand Fir-White Fir Forest and Woodland 

 

. 
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Table 4. Confusion matrix of Existing Vegetation Group (EVG) in gridded Landfire data and imputed forest plot data. 

 

 

 

 

 

 

 

Figure 4. 

Barplots comparing Existing Vegetation Group (EVG) of imputed forest plot data and gridded Landfire reference 

data. Units of the y axis are numbers of pixels. 

 

In general, within-class accuracies were lower in rarer classes. This result makes sense, since it is 

unlikely in rare types that random forests can match all three of the response variables (forest cover, 

height, and existing vegetation group) when choosing from a limited pool of candidate forest plots, 

and must in essence choose which of these response variables is most important to match. If increased 

accuracy was desired in future implementations of this methodology, increasing the sample size of 

rare types would likely be the most effective way to boost accuracies.  

 

 Conclusions 

 
Here, we have demonstrated that a modified random forests approach is a feasible method for imputing 

forest plots to a set of target landscape grids. This method produces a seamless grid of tree data at the 

landscape level. The modified random forests method produced high correlations between the target 

gridded data and the imputed plot data for the response variables of forest cover, forest height, and 

existing vegetation group (86%, 97%, and 84% respectively), an indication of high model accuracy. 

Very high classification accuracy is one of the strengths of the random forest method, along with its 

ability to utilize categorical as well as numerical variables (Cutler et al. 2007). Due to the high 

accuracy, the output imputed forest plot data should perform well in a number of applications, 

including estimation of risk from wildfire to terrestrial carbon resources, and analysis of the effect of 

fuel treatments on fire sizes and landscape-level burn probability. 

Imputed plot 

Gridded 

Landfire 



 Chapter 2 - Fire Ecology 

 

 Advances in Forest Fire Research – Page 590 

 

 References 

 

Crookston, NL, Finley, AO (2008) yaImpute: an R package for kNN imputation. Journal of Statistical 

Software 23, 1-15. 

Cutler, DR, Edwards, TC, Beard, KH, Cutler, A, Hess, KT, Gibson, J, Lawler, JJ (2007) Random 

forests for classification in ecology. Ecology 88, 2783-2792. 

Drury, S, Herynk, J, 2011. The national tree-list layer: a seamless spatially-explicit tree-list layer for 

the continental United States.  

Moeur, M, Stage, AR (1995) Most similar neighbor: an improved sampling inference procedure for 

natural resource planning. Forest Science 41, 337-359. 

NatureServe (2009) 'International ecological classification standard: terrestrial ecological 

classifications.' NatureServe Central Databases. Arlington, VA, U.S.A. Data current as of 06 

February 2009.). 

O'Connell, BM, LaPoint, EB, Turner, JA, Ridley, T, Pugh, SA, Wilson, AM, Waddell, KL, Conkling, 

BL (2014). The Forest Inventory and Analysis Database: Database Description and User Guide 

Version 6.0 for Phase 2. Available at http://www.fia.fs.fed.us/library/database-

documentation/current/ver6.0/FIADB_user%20guide_6-0_p2_5-6-2014.pdf [Accessed 16 July 

2014]. 

Pierce, KB, Ohmann, JL, Wimberly, MC, Gregory, MJ, Fried, JS (2009) Mapping wildland fuels and 

forest structure for land management: a comparison of nearest neighbor imputation and other 

methods. Canadian Journal of Forest Research 39, 1901-1916. 

 




