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Abstract 
This paper draws the attention of the community about the capabilities of an emerging generation of bio-inspired 

vision sensors to be used in fire detection systems. Their principle of operation will be described. Moreover 

experimental results showing the performance of an event-based vision sensor will be provided. The sensor was 

intended to monitor flames activity without using optic filters. In this article, we will also extend this preliminary 

work and explore how its outputs can be processed to detect fire in the environment.  
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 Introduction 

 

Infrared cameras can easily detect fire and hot spots. Unfortunately, they are expensive, difficult to 

handle, and fragile (Briz et al. 2003). For this reason, CMOS cameras are still preferred for some 

applications where it is not strictly necessary operating in the whole infrared band, (Cheon et al. 2009, 

Naoult et al. 2007, Bendiscio et al. 1998, Fernandez-Berni et al. 2012). Silicon can detect Near Infrared 

Radiation (NIR) within the band [700 1,100] nm. This property can be exploited to monitor flame and 

fire activity.  

Flames have a very characteristic oscillatory behavior. They flicker with certain frequency components 

that depend on their nature. The study of these frequency components is interesting for industrial 

processes and applications. Traditionally CMOS cameras with NIR filters have been employed (Yan 

et al. 2006). As an alternative to this traditional approach, recently we proposed a bio-inspired event-

based system to monitor flame activity without using optic filters (Leñero-Bardallo et al. 2013). The 

idea behind this method was to compare the photocurrents of stacked photodiodes at different depths. 

The top one was more sensitive to shorter wavelengths and the bottom one was more sensitive to 

longer wavelengths, having a very good sensitivity within the NIR band. Just comparing the difference 

between their photocurrents, we were able to determine if the incident radiation was within the NIR 

band without optic filters. Moreover, we could process with a real-time algorithm the temporal 

variations of the NIR levels in the visual scene provoked by flames and compute their frequency 

components values. 

This paper studies how the prior work to monitor flame activity could be extended to detect fire in the 

environment and emit an alarm in case. We will show that the previously implemented algorithm 

outputs can be processed to detect fire with a low computational load. Up to date, all the forest fire 

detection systems with cameras use frame-based vision sensors. With this contribution, we also want 

to draw the attention of the community about this new generation of bio-inspired vision sensors. 

This document is organized as follows: In Section 3, we explain briefly the fundamentals of bio-

inspired vision sensors and we discuss their feasibility for fire detection; Section 4 explains what kind 

of radiation can be sensed with CMOS sensors; Section 5 describes our sensor and algorithm to process 

its outputs and detect radiation within the NIR band; Section 6 provides experimental results when our 

system is employed to monitor flame activity; Section 7 explores how the NIR separation algorithm 

http://dx.doi.org/10.14195/978-989-26-0884-6_151
mailto:juanle@imse‐cnm.csic.es
mailto:hafliger@ifi.uio.no


 Chapter 5 - Fire Suppression and Safety 

 

 Advances in Forest Fire Research – Page 1377 

 

can be modified to emit an alarm if there is fire in the environment; finally, Section 8 draws some 

conclusions. 

 

 Bio-inspired Event-based Vision Sensors 

 

Conventional vision sensors are frame-based systems (also known as smart imagers). A frame is a 2D-

dimensional matrix that contains information about the visual scene (typically light intensity or color). 

Such sensors always provide a continuous output data flow (frames are transmitted with a continuous 

periodicity) that can be very redundant if the visual scene does not change. If we compare their 

performance with the human retina, we can state that they perform worse in the majority of 

uncontrolled situations and environments: their dynamic range is much lower, their sensitivity to light 

is also lower, and their power consumption is much higher.  

For these reasons, some authors considered the idea of developing bio-inspired vision sensors (also 

called retinas, (Mahowald 1994, Leñero-Bardallo et al. 2010, Leñero-Bardallo et al. 2011). These 

sensors try to mimic the interactions of the cells of the human retina. The retina operates in a very 

different way to conventional vision sensors. Its cells process the visual information before 

transmitting it to the brain. Thus, redundant information is not sent through the optical nerve. Retinal 

cells can compute the spatio-temporal contrast that contains almost all the relevant information about 

the visual scene. This information is transmitted continuously. There is a massive parallel architecture 

and cells can send anytime spikes to the brain. Therefore biological systems are inherently faster than 

classic imagers which bandwidth is limited by the frame rate.  

The main drawback of artificial event-based sensors is their low pixel fill factor. Their pixels have 

more transistors than commercial frame-based pixels with three or four transistors. Extra circuitry per 

pixel is required to process the visual information and to implement and asynchronous pixel 

communication (Häfliger 2000). However, such sensors are good candidates for applications like fire 

detection or surveillance, where high image quality is not mandatory, and speed and low power 

consumption are preferred. They have a great potential to be nodes of wireless sensor networks. In 

such networks it is mandatory to minimize the amount of data transmitted from the sensors to a central 

node which processes the information. 

 

 Fire Detection in the NIR Band 

 

A CMOS camera without filters detects radiation beyond the visual spectrum, i.e. Ultra Violet ([250, 

390] nm), visible ([390, 750] nm), and NIR ([750, 1100] nm). Hot spots, fire or flames can be detected 

with a CMOS sensor with a NIR filter (Naoult et al. 2007), (Li et al. 2010) (hot spots need to be above 

350Cº). Smoke detection is possible too when employing NIR sources (e.g. NIR LEDs). 

In our particular case, we developed a system (Leñero-Bardallo et al. 2013) with an event-based sensor 

to monitor the temporal variations of the visual scene provoked by flames. Flames have frequency 

components within the interval [0, 250] Hz and their flickering can easily be tracked with an 

asynchronous sensor. 

As a continuation of this preliminary work, we propose to develop new real-time algorithms, (Leñero-

Bardallo et al. 2013), to detect fire in indoors and outdoors environments. According to our 

experimental results, flames provoke very fast and periodic variations of NIR levels in the visual scene 

that can be identified from other NIR sources like sunlight. Such periodic variations of the NIR levels 

are easy to detect when they appear, just computing the standard deviation of previously recorded NIR 

levels and normalizing it. 

 

 

 

 



 Chapter 5 - Fire Suppression and Safety 

 

 Advances in Forest Fire Research – Page 1378 

 

 Methodology  

 

We employ an event-based vision sensor to detect the NIR variations of the visual scene (Leñero-

Bardallo et al. 2013). The sensors pixels are made up of three stacked photodiodes at different depths. 

Each one is connected to a circuitry that sends pulses out the chip, with a frequency proportional to its 

local photocurrent (see Figure 1). The top one is more sensitive to shorter wavelengths. The bottom 

one is more sensitive to longer wavelengths and to the radiation within the NIR band. This property is 

based on the light penetration depth. Shorter wavelengths photons have more energy and on average, 

they travel less time before they generate electron-hole pairs. Longer wavelengths have less energy 

and they travel more time across the silicon before generating electron-hole pairs. 

 

Figure 1. Experimental setup: vision sensor and data logger. Photodiodes cross-section. Each one is connected to 

circuitry (channel) that generates pulses with a frequency proportional to its inputs photocurrents. 

 

 

 

Figure 2. Integrate-and-fire neuron. This circuitry is replicated three times within each pixel. Depending on the input 

is connected to the photodiode cathode/anode, we use this circuit or a complementary version of it, with p-MOS 

transistors instead n-MOS transistors and vice versa. 
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Note that the photocurrents at the inputs of the integrate-and-fire neurons do not correspond with each 

photodiode current. For this reason it is necessary to process the events outputs to estimate the 

photocurrent of each photodiode. Unfortunately, we do not know the photodiodes quantum 

efficiencies, their doping profiles, and the PN junction depths (such information was not disclosed by 

the foundry). For this reason, it is impossible to know the exact photocurrent values. We denote the 

photocurrent estimations after processing the integrate-and-fire outputs as
'

},,{ RGGBBI  . However, to 

represent the color information of each pixel, we only need to know the relative values of each 

photocurrent. For this reason, it is possible to represent RGB images after processing the channels 

outputs. Every time that a pixel integrate-and-fire neuron spikes, its frequency 
*f  is updated. 

Periodically, the estimation of the photocurrents is computed according to the following equations: 
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Where },,{ RGGBBC  are the photodiodes capacitances, },,_{ RGGBBthV  are the voltage increments at the 

integrate-and-fire neurons capacitances to elicit one spike, and }.,{ RGGBBe  are parameters that represent 

the photodiodes quantum efficiencies. 

 

 

Figure 3–Experimental setup: vision sensor and data logger. 

 

 Experimental Results 

 

Figure 3 shows the experimental setup. We designed a custom board for the vision sensor. That board 

is connected to a data logger that sends the output data to a PC. We programmed a dedicated Java 

interface (jAER open source) to compute the values of 
'

},,{ RGGBBI  and show real-time color images. 

Main system specifications are summarized on Table I. 
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Table 1 –System Specifications 

Array Size 22x22 

Technology STM 90nm 

Power Supply 2.5V 

Chip Size 1mm x 1mm 

Pixel Size m x m 

Fill Factor 28% 

Power Consumption 0.03mA @ 10Keps 

Dynamic Range >60dB 

 

 

 Detection of NIR levels 

A real-time NIR extraction algorithm was proposed, (Leñero-Bardallo et al. 2013). It operates with 

photocurrents estimations 
'

GI  and 
'

RI . The NIR levels are proportional to the photocurrents ratio after 

a certain number of events are received: 

 

'

'
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Its performance is depicted in Figure 4. Within the NIR band, the value of 
'

RI  is larger than
'

GI . To 

take into account the light intensity, we multiply 
'

'

G

R

I

I
 by '

RI .  Once we have estimated the NIR levels 

of each pixel, we can use this information to either create intensity images proportional to the NIR 

levels that each pixel detects or to estimate global NIR levels variations of the visual scene. This can 

be done computing the FFT of the global NIR levels within a time interval. The pixel updating 

frequency is in the order of KHz and the main NIR frequency components of a flame are below 100Hz. 

Hence, the system is fast enough to track flames flickering. 

 

Figure 4. Algorithm response on infrared detection mode. The sensor was stimulated with a monochromator emitting 

light at different wavelengths. 

mailto:0.03mA@10Keps
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Figure 5. System Diagram for fire detection.  

Figure 5 shows a diagram of the experimental setup operating with flames. A gas lighter emitting 

flames was placed in front of the sensor at a distance of 0.5m. Figure 6 displays the temporal variations 

of the NIR levels of the visual scene with and without flames. With flames the NIR levels change with 

a very characteristic periodicity due to the flames flickering. Without flames, the NIR levels are much 

more stable. Figure 7 shows the spectra of temporal NIR variations with flames in indoors and outdoors 

environments. Results are quite similar to the ones reported by other authors with other methods based 

on optic filters (Yan et al. 2006). Sunlight provokes an increase of the average NIR level of the scene 

and makes more challenging the frequency analysis.  

A custom Java interface (jAER open source) was programmed to show real-time NIR images as it is 

depicted in Figure 8. The interface can display images and implements the NIR algorithm previously 

explained. Figure 9 shows a snapshot of the NIR levels emitted by a flame. The different regions of 

the flame can be distinguished. The root and the central region of the flame have less energy than the 

periphery where the flame emits more energy in the NIR band. 

 

Figure 6. Real-time temporal variations of the NIR levels of the visual scene in different environments with and 

without flames.  
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Figure 7. Frequency components emitted by a flame in indoors and outdoors environments. Outdoors the average 

NIR level is higher due to sunlight. 

 

 

Figure 8. Computer interface showing real-time NIR levels emitted by one flame.  



 Chapter 5 - Fire Suppression and Safety 

 

 Advances in Forest Fire Research – Page 1383 

 

 

Figure 9. Snapshot showing NIR levels when the sensor was exposed to a flame. It is possible to distinguish the 

different regions of the flame according to (Yan et al. 2006).  

 

 New approach to detect fire  

 

So far an algorithm has been successfully employed to monitor NIR variations of the visual scene and 

to compute the flame frequency components: see 0 and 0. Once we have computed the global NIR 

levels in the scene, we can compute periodically the standard deviation of the previously recorded NIR 

levels and normalize it. 
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The parameter  nA represents the variations of the NIR levels within the visual scene. It does not 

depend on illumination. If its value exceeds a certain limit, we can assume that there are flames in the 

scene. Depending on how many previously recorded samples are considered to compute the average 

NIR levels (see 0), the value of  nA  with and without flames will be different. Thus there is a trade-

off between algorithm execution speed, the algorithm robustness to false alarms, and the number of 

events that have to be received to detect fire. 0 illustrates the values of the normalized standard 

deviation computing the average NIR levels of the scene with different number of global NIR levels 

previously computed. Without flames,  nA  values are always lower than 5%. With flames, such value 

is higher two or three times higher. To prevent generate fire alarms, a value of   %10nA  seems to 

be practical according to our measurements. 

The algorithm only requires to store N previously estimated NIR levels and to update the value of 

 nA  periodically. To reduce the computational cost detecting fire  nA  could be updated every second, 

for instance. 
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Figure 10. Normalized standard deviation computation. With flames, the value is always higher than without flames. 

The normalized value does not depend on illumination conditions.  

 

 Conclusions 

 

In this paper we have presented event-based sensors as an alternative to classic frame-based vision 

sensors for fire detection and surveillance systems. One particular example of a system with a bio-

inspired camera that can be used to monitor flame activity is shown. The sensor outputs can be 

processed real-time to obtain NIR levels from the visual scene. Furthermore, we have extended this 

prior work define a real-time algorithm that detects fire in the environment analysing the transient 

variations of the NIR levels of the scene. Our goal is to create a portable system that emits an alarm if 

fire is detected in the visual scene. Experimental results with flames are provided. 0 summarizes the 

main system features. 
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