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Abstract 
Large wildfires keep on developing in the French Mediterranean region, regularly threatening responders. We 

tested if these large fires could be classified into types, and if these types were representative of different 

environmental drivers. To proceed, we established a database comprising 153 of the largest fires from the last 

25 years. For each fire we collected three datasets to describe the environment, the fire behavior and the control 

operations. We performed a hierarchical clustering analysis followed by a predictive analysis with Bootstrap 

Regression Trees. Fires were classified in 8 types that could a posteriori be reduced to 5 types. The One-way 

type was featured by moderate environmental parameters, the Multi-way type was featured by slope, the 

Winding and Rapid types were featured by wind, while the Very large type was featured by the drought code. 

Moreover, the probability of having vehicles trapped in a large fire was primarily correlated with the number 

of vehicles assigned for suppression. This study provides the basis for upcoming trainings of Fire Analyst in 

France. It paves the way for further research on predictive wildfire danger mapping. 

 

Keywords: Forest fires, Firefighters, Hierarchical classification, Danger, Wind direction, Propagation rate. 

 

 

 Introduction 

  

South-Eastern Mediterranean France is the major fire hotspot region in this country since each year it 

records about two-thirds of the 4,000 fire ignitions, and the mean annual burned area is 20,000 ha 

(Promethee 2014). Wildfires in this region constitute a major threat to human life and infrastructures 

thus generating high damages and costs like in other worldwide Mediterranean regions (San-Miguel-

Ayanz et al. 2013). Fires are also a major landscape driver and the main disturbance for many 

ecosystems (Keeley et al. 2012). Most fires occur during the summer drought period and are crown 

stand-replacing fires. Wildfires are a major challenge for policy makers due to their costly suppression 

(San-Miguel-Ayanz et al. 2013). 

Wildfires are especially active in South-Eastern France because this region encompasses many fire 

conducive features: the Mediterranean climate characterized by long summer droughts and frequent 

strong winds (mistral) (Curt et al. 2011), a high population density inducing numerous fire ignitions 

in the road and house vicinities (Curt and Delcros 2010), and large connected stands of flammable 

forests and wildland fuels due to natural afforestation and a positive fire-fuel feedback in shrublands 

(Curt et al. 2013). The increasing population density and the extension of rural-urban interfaces favor 

fire ignitions and enhance human vulnerability (Lampin-Maillet et al. 2008). Models for the next 

decades predict the same trends in land cover and land use changes than along the past decades ; 

therefore inducing an enlarged expected proportion of vulnerable areas (Moreira et al. 2011).
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Based on the climate part of the global change, increase in mean temperature associated with more 

frequent heat waves should also extend fire seasons and should in turn generate higher pressure on fire 

suppression forces (Moriondo et al. 2006). 

 

Wildfire size distribution is typically asymmetric with many small fires and few large fires. However, 

as in many regions around the Mediterranean basin, these large fires are those which threaten the most 

people and ecosystems (San-Miguel-Ayanz et al. 2013). Definitions for large fires vary according to 

the context: in France fires larger than 100 ha are generally considered as large. They are 741 among 

the 442,000 recorded from 1989 to 2013 and archived in Promethee database. They are often 

characterized by spotting and high rate of spread, these characteristics making them difficult to control, 

and reducing the range of suppression options (Moreira et al. 2011). 

In 1992 a new policy and strategy for French fire prevention and suppression has been established 

after a number of large and destructive fires along the previous decades (Battesti 1992). First, it is 

based on improved prediction of daily fire danger, increased communication on fire risk, and banning 

of human frequentation in forests during the days at risk. Secondly, it relies on a hard-hitting, initial 

attack of all fires, concentrating all the fire suppression means available (Direction de la Sécurité Civile 

1994). This strategy has been proved effective for small-to-medium fires since the mean annual burned 

area has decreased since 1992, while ignitions have remained rather constant and population and 

infrastructures have increased (Promethee 2014). However, large and destructive fires still occur every 

year escaping initial attack and burning hundreds or thousands of hectares. 

We hypothesize that large fires will remain frequent in the South of France for two main reasons. First, 

the improved fire suppression leads to a negative selection to the benefit of the largest ones. This 

process paradoxically favored by an efficient fire policy has been referred to as the ‘fire paradox’ 

(Sande Silva et al. 2010): if fire suppression is effective and reduces the area burned, then wildland 

fuels accumulate and fuel connectivity increases across the landscape, thus increasing in turn the 

likelihood of large fires when fire suppression forces cannot control them at the initial stage. Secondly, 

fire suppression forces will face new challenges: climate change will likely favor more intense and 

more frequent fires and the extension of the area at fire risk while fire suppression crew and equipment 

may remain constant due to stagnation of financial resources allocated. The firefighters will have to 

operate on larger territories, including abroad. 

All these arguments pledge for better understanding of the large fires and their drivers. We proposed 

to build a classification of main large fire types and to explore conditions for their propagation. Such 

classification has already been established for Catalonia (Spain) (Costa et al. 2011). While climate and 

fuel are similar in both regions, this classification has not been applied for France mainly due to 

differences in suppression strategies, as well as to coarse database information preventing such 

analysis. However such knowledge would allow fire brigades to base their intervention on a scientific, 

fast and robust methodology for forecasting fire risk and fire behavior. This approach is typically that 

of ‘Fire Analysts’ whose expertise is to predict the likely behavior and danger of a fire in relation to 

weather, topography and fuels (Castellnou et al. 2010). A high technical level based on scientific 

analysis has to be promoted to offset the empiric knowledge of local conditions that tends to decrease 

in Fire Services due to the decline of training over small fires. 

In this study we investigated French Mediterranean fires larger than 200 ha that have occurred along 

the 25 last years in order to answer the two following questions: are there different types of large fires 

characterized by a typical behavior and typical level of danger for responders? What are the specific 

environmental drivers (vegetation, topography, fire weather) for these fire types? 
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 Materials & methods 

 

 Fire database 

293 wildfires larger than 200 ha are reported on the Promethee database for the 1989-2012 period. To 

proceed, we collected fire behavior data describing the fire scenario, environmental data describing 

the fire environment (weather, fuel and topography), and fire suppression data in relation with human 

response to fire. This data collection required to get sufficiently detailed reports on each fire or to 

interview fire managers and commanders in 15 different fire agencies throughout the South of France. 

38 Fire Officers and Forest Officers in charge of key positions during the fires were questioned and 81 

paper or computer reports were investigated. We compiled detailed information for a subset of 153 

among the 293 fires. The covered area extends from the Alps to the Pyrenean Mountains including 

Provence and Languedoc limestone plateaus as well as Corsica Island.  

Each fire perimeter has been georeferenced on a dataset stored by the French Forest Department 

(Office National des Forêts). The accuracy of this database has been previously tested (less than 0.05% 

difference) by comparing ground collected fire perimeters with remote sensing inferred perimeters 

(Curt et al. 2013). 

All spatial analyses were performed using the open source Geographical Information System 

QuantumGIS 2-2 Valmiera (http://www.qgis.org). 

 

 Fire behavior data 

We investigated three variables of fire behavior. The first one was the final area (SURF, in hectares) 

representative of the total area burned georeferenced. It can be slightly different from the one registered 

on the Promethee database which is given by responders sometimes with less accuracy, especially for 

the oldest fires. We interpreted SURF as an indirect and synthetic indicator which differentiates the 

large fires (hundreds of hectares) from the very large ones (thousands of hectares). 

The second variable was the mean rate of propagation (HaH, in hectares per hour), featuring the overall 

fire increase and not only its axial rate of spread. It was extrapolated from both officer interviews and 

post-fire reports. The method consisted in rebuilding the isochrones of fire propagation. Assuming that 

the precise time of ignition and the final time of extinction were difficult to know, we focused only on 

the 10 to 90% extension of final area burned of each fire. Rapid fires were interpreted as dangerous 

since they spread more rapidly than the fighting resources can move. 

The third variable was the angle change of the main propagation direction (DIRCHG). It was 

investigated assuming that changes result from specific combination of environmental data. When the 

main axis of the fire trajectory opened to an angle lower than 60°, it was considered as a non-significant 

change of direction (coded as 0). When the direction angle change was higher than 60° but less than 

90° with constant wind, it was assumed to be a ‘winding’ fire (coded as 1). In all other cases with angle 

change higher than 90°, it was coded as 2. These fire direction changes are challenging for responders 

since they modify the position of active fire lines. 

 

 Environmental data 

Weather during a fire event is crucial for explaining its size, its shape, and its danger (Pyne et al. 1996). 

Fire weather is often assessed using the Fire Weather Index (FWI), which is an integrative and unitless 

index that was designed originally to forecast fire risk in Canada on the basis of daily past and current 

weather conditions (Van Wagner 1987). The FWI consists of six components accounting for air 

temperature, relative humidity, surface wind speed, and the last 24-hour rainfall (Groot et al. 2007). 

The FWI and its sub-indices provides a uniform, numeric method of fire danger rating throughout an 

area and have been extensively used in the Mediterranean basin regions (Giannakopoulos et al. 2012). 

In this study we computed the FWI and its sub-indices for each fire using a daily integrative model on 

a 2 * 2 km grid. As some fires were very large, each of them was assigned the mean value of the index 

http://www.qgis.org/
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within the fire perimeter. We especially focused on: (i) the duff moisture code (DMC), representative 

of the average moisture content of loosely compacted organic layers of moderate depth, it gives an 

indication of fuel consumption in medium-size woody material such as shrubs; (ii) the drought code 

(DC), representative of the average moisture content of deep, compact, organic layers, it indicates the 

seasonal drought effects on forest fuels. By selecting these two indexes, we integrated together rainfall, 

temperature and relative humidity. We chose to directly use the wind speed variable (WINDSP in 

meters per hours) without going through the fine fuel moisture code of the FWI because this last sub-

index has been recognized to be nearly saturated during the entire summer season in Mediterranean 

region. WINDSP values were collected from the closest weather station to the fire (Meteo France 

2014). 

Vegetation composition within the area burned was characterized using the 1986 and 2006 French 

Forest Institute maps (Institut Forestier National, BDForêtV1; http://inventaire-forestier.ign.fr). These 

maps being updated from inventories performed every 10 years, the last statement before fire was 

considered. The vegetation type of every 2.25Ha forest or natural unit is given from photo 

interpretation of aerial images in infrared color. Depending on the inventory date, there were up to 75 

different fuel classes that we aggregated in only four classes for the purpose of this study: broadleaved 

forests, pine forests, shrublands and other – this last class covering all agricultural, grassland and urban 

spaces. The considered data were the percentage of each vegetation class within the area burned. 

The average slope for each fire was obtained by crossing the Digital Elevation Model from the National 

Geographical Institute (Institut Geographique National, BDAlti25; http://www.ign.fr) with the layer 

of fire final area. 

 

 Fire suppression 

We collected the number of vehicles considered as terrestrial resources (RESS) and indicative of the 

means for suppression. The chosen value represents the maximum number of fire appliances 

simultaneously committed, excluding logistic support and command vehicles.  

Any reported accident injuring a responder or destroying an appliance was finally pointed as a trap 

(TRAP). The cases of little diseases, very common on such large fires and often linked to warmth and 

efforts in smoky conditions were not considered. Neither were traffic accidents of responders outside 

the fire perimeter. 

 

 Data analysis 

All statistical tests and modeling were performed using the statistics program R (R Core Team 2013). 

The final area (SURF) and mean rate of propagation (HaH) variables were both divided into three 

classes each using the Jenks natural optimization method which minimizes each class average 

deviation from the class mean, while maximizing each class deviation from the means of the other 

groups (Jenks 1967). 

A first fire classification was performed on fire behavior data, using the R Cluster package (Maechler 

et al. 2013). The Partitioning Around Medoids (PAM) method was used with Euclidean distances and 

standardized data (Reynolds et al. 1992). Results were plotted on a map to identify homogeneous areas 

in term of fire types. 

To assess the influence of the environmental data on each fire class, we used the Bootstrap Regression 

Trees (BRT). This statistical method is particularly suitable to explore ecological drivers and to 

optimize the predictive performances (De'Ath 2007). Furthermore, it is flexible and easy to read (Elith 

et al. 2008) and it considers any collinearity among variables. We proceeded with the dismo and gbm 

packages (Hijmans et al. 2013; Ridgeway and others 2013) using a Bernoulli type error. Several 

regression trees were calculated on calibration data using a “boosting” process. Half the dataset was 

used to build the model and the other half to test the class accuracy. The number of trees in each BRT 

was automatically set at 20 with a 0.5 fraction and a 0.005 learning rate. We assessed model prediction 

http://inventaire-forestier.ign.fr/
http://www.ign.fr/
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accuracies using the area below the receiving operator curve (AUC) (Pearce and Ferrier 2000). The 

performance was considered as excellent when AUC>0.9 and weak when AUC<0.6. 

 In order to assess if the types isolated with BRT correspond to different level of danger for responders, 

we calculated for each of them the rate of fire where resources were trapped and the Student confidence 

interval (Eq.1) where this rate would have been statistically supposed to be: 
 

CI = [f-z/2√(f(1-f)/(n-1)) ; f+z/2√(f(1-f)/(n-1))] (Eq.1) 
 

with CI the interval with  probability, f the rate of trap in the database, z/2 Student coefficient, and 

n number of fires in the type. 

Assuming that the probability to have resources trapped (TRAP) is closely linked to the quantity of 

resources assigned (RESS), the correlation between these two parameters was tested separately with a 

parametric test of average comparison (Eq.2): 
 

H0: μ1=μ2, with CI(μ1-μ2) = [(ā1- ā2) - z/2 *s√(1/n1+1/n2) ; [(ā1- ā2) + z/2 *s√(1/n1+1/n2)] (Eq.2) 
 

where, for each of both distributions 1 (number of vehicles on fires with trap) and 2 (number of vehicles 

on fires without trap), μ is the population mean, ā the observed mean, n number of fires in the 

distribution and s the weighted variance of both distributions. 

 

 

 Results 

 

 Collected datasets 

The 153 fire dataset distribution was compared with the 293 fires recorded in the Promethee database 

(Figure 1). The very large fires, which are generally the best documented, are better represented in the 

present study: 74% of the > 1000 Ha events versus 42% of the 200-500 Ha fires. If geographical 

distribution of data partly results from the ability to access different regional agency records, the 

underrepresentation of Haute Corse, where the number of large fire was the most important, is likely 

explained by the fact that in this territory written reports were few, thus we investigated only through 

interview and therefore we focused on the post-1995 fires. Moreover, the oldest are the fires, the less 

information is available, arguing why the 153 dataset includes 37% of 1989-1999 incidents versus 

72% of 2000-2012 incidents. Finally, the seasonal variability is clearly represented with 93% of large 

fire occurrences recorded from June and September. 

Dealing with the fire behavior and environmental datasets (Tabl. 1), the windspeed values spread 

nearly totally on the Beaufort scale, varying from “calm” to “storm” with a mean being “fresh breeze”. 

The averaged drought index values can be considered as exceptionally high compared to original 

North-American classification values (Van Wagner 1987). Thus the fires studied here have spread 

with variable windspeeds but often with important or very important fuel dryness. Shrubland is the 

most represented vegetation type in areas burned. Most forest stands are dominated by pine, while 

pines can also be mixed with broadleaved species, generally oak trees. 

Data on fire direction change and suppression showed that among the 153 fires, winding was present 

on 16% of the fires (DIRCHG=1) and a shift on 22% (DIRCHG=2), while 16% of the fires recorded 

an accident (25 TRAP records). 
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Table 1. Recorded data: windspeed (WINDSP) ; Drought Code (DC), Duff Moisture Code (DMC) ; average slope 

(SLOPE) ; shrubland (SHRUB), pine (PINE), broadleaved (BRDLV), other fuel (OTHER) ; number of vehicles 

(RESS) ; prpagation rate (HaH) ; area burned (SURF). 

  WINDSP DC DMC SLOPE SHRUB PINE BRDLV OTHER RESS HaH SURF 

Unit  (km.h-1) (--) (--) (degre) (ratio) (ratio) (ratio) (ratio) (engine) 

(ha.h-

1) (Ha) 

Mean 32 650 146 15 0.61 0.19 0.08 0.11 95 163 1239 

Stand.dev. 17 193 81 7 0.30 0.25 0.13 0.16 83 208 1738 

Min. 0 24 18 3 0.00 0.00 0.00 0.00 9 1 208 

Max. 90 1067 376 35 1.00 1.00 0.57 0.93 400 1359 14020 

 

 Fire classification 

According to Jenks method results, the final area burnt was splitted in three classes: the 200-1990 Ha 

class including 84% of the fire, the 2000-7000 Ha class including 15% and the > 7000 Ha class 

representative of the remaining 1%. In the same way, the three classes for the propagation rate were 

1-219 Ha/H for 78%, 220-800 Ha/H for 19% and > 800 for 3% of the fires. 

The PAM clustering was optimal with seven groups based on a strong structuration with an average 

proximity of data of 87% and six of the seven groups with an average proximity > 50%. We gave a 

describing name to each group based on the three investigated variables (Tabl.2). 

 In the first three groups, fires have not reached very important area burnt neither very important 

propagation rate. Among them, the One-way represents fires with linear direction, the Winding fires 

with angled propagation axis and the Multi-way includes fires that totally changed their propagation 

axis. The fourth group is named Vast because fires have reached an important area with a moderate 

rate of spread. Finally, the last three groups represent fires that developed the most rapidly, even 
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Figure 1 – Comparison of the 153 fires dataset (red bars) with the data recorded on Promethee base (blue bars). 
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extremely quickly concerning the Mega. Among these three groups only fires in the Rapid did not 

reach the final area burnt of 2000Ha. 

When visually analysed, the spatial distribution of fire groups displays five areas (Figure 2): Western 

coast (Pyrénées-Orientales, Aude, Hérault and southern Gard), Provence (Bouches-du-Rhône and 

western Var), Maures/Esterel (Eastern Var and west of Alpes-Maritimes), Mountain (North and east 

of Alpes-Maritimes, Alpes-de-Haute-Provence, Gard cévenol, Ardèche and Lozère) and finally 

Corsica (Corse). Three of these areas (Provence, Maures/Esterel and Corsica) seem to be particularly 

affected by the largest fires but more information would be required to go further in the spatial 

interpretation, which is out of the present study scope. 

Table 2. Fire group based on the PAM clustering and fire number in each group. Each group is assumed to be 

homogeneous when the average proximity is > 0.5. The group specifications are given for each variable used in the 

clustering : SURF, HaH, DIRCHG. The final name outlines these specifications. 

Gr. Fire 

number 

Average 

proximity 

SURF 

(ha) 

HaH 

(ha.h-1) 

DIRCHG Name 

1 26 0.78 <2000 <800 2 Multi-way 

2 70 1.00 <2000 <220 0 One-way 

3 16 1.00 <2000 <220 1 Winding 

4 10 0.50 >2000 <220 0,1,2 Vast 

5 16 0.88 <2000 220à800 0,1 Rapid 

6 11 0.41 >2000 220à800 0,1,2 Rapide&vast 

7 4 0.79 2000-7000 >800 0,1 Mega 

Western 

coast

Provence Maures/Esterel

Corse

Mountain

Figure 2. Spatial distribution of fires regarding their group. 
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 BRT 

The number of fires in groups 4 (Vast) and 7 (Mega) being insufficient to get convincing results with 

the BRT method, we gathered all the fires over 2000Ha, ie Vast, Rapid&vast and Mega, in a unique 

group thereafter called Very large. 

Positive values of fitted function for each variable determine the data scale linked to the given group 

(Fig.3). Thus, fires in the One-way group are substantially linked to low slope (<12°) with large parts 

of shrublands (>85%, ie the upper quartile of the distribution), moderate wind (<40 km/h) and low DC 

(<600 ie the lower third). The Multi-way fires are in relation with strong slopes (>17° ie the upper 

third), >50% of pine and <40% of shrublands. The Winding fires occur with >75% of shrublands, 

DC>750 (extreme value, upper quartile) and significant wind (>30km/h). The Rapid fires firstly 

happen with strong wind (>40 km/h ie the upper third), moderate DC (<500) and slope under 12°. 

Finally, the Very large fires are linked with important DC (>600), between 50 and 90% of shrublands 

in the landscape and low slope (<13°),. 
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Figure 3. Variance of the 4 most significant variables for each group (horizontal panel including 4 subpanels): One-

way, Multi-way, Winding, Rapid and Very large. 

We propose in Fig.4 a logical dichotomous synthetizing key to deduce the most likely large 

fire subtype from environmental data highlighted in the different fire groups. Low DC and low slope 

will give One-way or Rapid fire subtypes depending on the wind. High DC values will generate the 

Winding subtype with strong wind and the Very large subtype with strong slope. Strong slope will 

mainly lead in Multi-way subtype. 

 

Figure 4. Synthesis of expected fire subtypes according to environmental data. 

 

 Vehicle traps 

There is no significant difference in any fire group ratio with the overall mean value of 0.16 calculated 

from the entire studied database, even with a 90% confidence interval (Tabl.3). Nevertheless, based 

on the regional distribution, we found a significant higher risk in Provence and lower risk in Corsica 

than elsewhere in average. 
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Table 3. Accident ratio (TRAP) and 90% confidence interval for each group and area. 

 Name Fire nb. TRAP ratio 90% C.I. 

Group Multi-way 26 0.11 0.03 – 0.28 

One-way 70 0.17 0.09 – 0.23 

Winding 16 0 0 – 0.32 

Rapid 16 0.31 0 – 0.32 

Very large 25 0.20 0.03 – 0.29 

Area Corsica 48 0.06 0.07 – 0.24 

Maures/Esterel 18 0.11 0 – 0.31 

Provence 52 0.27 0.07 – 0.24 

Western coast 18 0.22 0 – 0.31 

Montain 17 0.12 0 – 0.32 

 

Finally, the homogeneity test of mean values of resources assigned with a 99% confidence 

interval (CI(μ1-μ2) = [31 ; 119]) showed that there are significantly more accidents in fires with 

numerous assigned resources. 

 

 

 Discussion 

 

 A suitable classification for France 

One of the aims of this study was to check if large fires in South of France could be classified into 

subtypes. We have found that 46% of them are One-way and 10% are Winding. That means that 56% 

of the fires are mainly driven by a constant wind, which may locally take a different direction due to 

terrain. A small part of fires (17%) belongs to the Multi-way subtype. The change of wind direction 

can either result from a reverse of topographic breeze or from a wind shear, which is frequent in the 

Maures/Esterel area. Whatever the cause, the fire behavior can be anticipated for this subtype thanks 

to an adequate knowledge of the local meteorology. Finally, the two last subtypes, Rapid (10%) and 

Very large (16%), regroup the fires for which the fighting operations are the most difficult, the less 

effective and the most dangerous for suppression crews. These fires burned the largest area or reached 

the fastest propagation rate, sometimes both together.  

To our knowledge, there are only similar studies for the Mediterranean region in Catalonia (Spain), 

conducted by Castellnou et al. (Castellnou et al. 2010). While we similarly investigated historical fires, 

we however used a slightly different methodology. Indeed, while the Catalan team considered the 

synoptic regional weather for each analysed fire, we focused on FWI index parameters in the vicinity 

of each fire. Moreover, we did not consider the three types of fires commonly accepted 

(i.e.topographic, wind driven and plume dominated), but we rather observed how our fires were 

naturally distributed in our study area considering their direction changes and their rate of propagation. 

Our results are convincing, introducing new subtypes of fires, and call for further research, especially 

on explosive or convective issues.  

 

 Environmental data as driver of fire types  

Our large fire types were driven by environmental data, especially Drought Code, Windspeed and 

Slope. On The fact that the Duff Moisture Code has not been identified as a driver of any type of large 

fire could suggest that it may rather characterize smaller fires than 200Ha but this would need more 

investigations. 

We have not kept the fuel composition as a determining factor because the shrubland cover raised as 

an explaining variable in almost every type. Indeed its fitted functions were all providing information 

in the same way, with shrub cover being positively correlated to the fire types. Multi-way fires are the 
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exception with shrub cover being negatively correlated to the type and pine and broadleaved cover 

being positively correlated (the broadleaved signal was nearly flat, so difficult to read). In conclusion, 

we haven’t found relevant to consider forest cover as a driver of Multi-way fires since it is an evidence 

that mountainous areas are the most propitious to this type of fire and together the most forested. The 

drivers of this fire type are thought to be more likely mountainous environment with wind breezes. 

 

 Link between number of resources assigned and trap probability  

No fire type was significantly more propitious to endanger responders. Nevertheless, the trap 

likelihood was positively correlated to the number of vehicles assigned for suppressing fire. That is 

likely why accidents are prevalent in Provence area where there is a need to deploy many trucks to 

protect all the houses threatened by any fire. Conversely, accidents are less frequent in Corsica where 

the number of engines is much smaller. 

 

 Possible bias in the data  

The large fire types we found are based on data coming from reports and interviews that may be partly 

subjective. Indeed, we called for data records up to 25 years after fires occured in order to rebuild 

fireline isochrones. Nevertheless, the accuracy of this oral information has been generally tested with 

crossing the interviews or comparing them to factual archived data. 

Moreover, the type of fuel could likely be the less accurate of environmental variables since the 

vegetation cover was based on geodatabases up to 10 years old. Within this time interval, some land 

use changes can have occurred such as afforestation of agricultural parcels. That is another reason why 

fuel data has been interpreted with caution. 

 

 Conclusion: implications for fire suppression 

 

In this study we have provided the first classification of large fires dedicated to help fire suppression 

in South-Eastern France. We have stated several large fire types characterized by their typical fire 

behavior and environmental drivers. These fire types range along a gradient of difficulty for fire 

suppression. Some types are predictable using their typical environmental drivers, which suggest that 

improvements in fire suppression safety and efficiency are possible using this approach. 

The basis for classification being established, it is now challenging to have further research on certain 

types of fire. In particular, we have to investigate ‘explosive’ fires and convective behaviors to link 

them to responder traps. Further studies should also focus on the geographical distribution of different 

groups of fire. 

In the workplace, first Fire Analyst trainings are in process in Europe for responders. This study will 

contribute to set the foundations for training program by proposing a typology related to environmental 

drivers for Mediterranean France. 

 

 Acknowledgements 

 

This study has been funded by the Service Departemental d’Incendie et de Secours (SDIS) 13 through 

S. LAHAYE’s lifelong learning. It would not have been possible without the valuable debriefings of 

firefighters and foresters from Alpes-de-Hautes-Provence, Alpes-Maritimes, Ardèche, Aude, 

Bouches-du-Rhône, Corse, Var, Gard, Herault, Pyrennées-Orientales and Var. We thank Marine 

PASTUREL for her help in data processing. 

 

 References 

 

Battesti JP (1992) Projet feux de forets; rapport d'étape. Ministère de l'intérieur; Direction de la sécurité 

civile (Paris) 



 Chapter 3 - Fire Management 

 

 Advances in Forest Fire Research – Page 707 

 

Castellnou M, Larranaga A, Miralles M, Vilalta O, Molina D (2010) Wildfire Scenarios: Learning 

from Experience. European Forest Institute (Joensuu) 

Costa P, Castellnou M, Larranaga A, Miralles M, Kraus D (2011) Prevention of large wildfires using 

the fire types concept. Fire Paradox European Project (Generalitat de Catalunya) 

Curt T, Borgniet L, Bouillon C (2013) Widfire frequency varies with the size and shape of fuel types 

in southeastern France: Implications for environmental management. Journal of Environmental 

Management 117. 

Curt T, Delcros P (2010) Managing road corridors to limit fire hazard: a simulation approach in 

southern France. Ecological Engineering 4, 1-12. 

Curt T, et al. (2011) Litter flammability in oak woodlands and shrublands of southeastern France. 

Forest Ecology and Management 261, 2214-2222. 

De'Ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88, 243-251. 

Direction de la Sécurité Civile (1994) Guide de stratégie générale pour la protection de la forêt contre 

l'incendie. Ministère de l'intérieur (Paris) 

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal 

Ecology 77, 802-813. 

Giannakopoulos C, et al. (2012) Comparison of fire danger indices in the Mediterranean for present 

day conditions. iforest-Biogeosciences and Forestry 5, 197-203. 

Groot WJd, Field RD, Brady MA, Roswintiarti O, Mohamad M (2007) Development of the Indonesian 

and Malaysian Fire Danger Rating Systems. Mitigation and Adaptation Strategies for Global 

Change 12, 165-180. 

Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) dismo: Species distribution modeling. R package 

version 0.9-3. 

Jenks GF (1967) The Data Model Concept in Statistical Mapping. International Yearbook of 

Cartography 7, 186-190. 

Keeley J, Bond W, Bradstock R, Pausas J, Rundel P (2012) Fire in Mediterranean Ecosystems. 

Ecology, Evolution and Management. Cambridge University Press 450 pp. 

Lampin-Maillet C, Long M, Jappiot M (2008) A Method for Characterising and Mapping 

Habitat/Forest Interfaces - a Means for Preventing Forest Fires. Revue Forestiere Francaise 

(Nancy) 60, 363-380. 

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2013) cluster: Cluster Analysis Basics and 

Extensions. 

Meteo France (2014) http://www.meteofrance.com  

Moreira F, et al. (2011) Landscape - wildfire interactions in southern Europe: Implications for 

landscape management. Journal of Environmental Management 92, 2389-2402. 

Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of 

climate change on fire risk in the Mediterranean area. Climate Research 31, 85-95. 

Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using 

logistic regression. Ecological Modelling 133, 225-245. 

Promethee (2014) Base de données sur les incendies de forêt en région méditerranéenne en France 

depuis 1973. https://www.promethee.com/. 

Pyne SJ, Andrews PL, Laven RD (Eds) (1996) 'Introduction to wildland fire.' (John Wiley and Sons 

Publishing) 

R Core Team (2013) R: A Language and Environment for Statistical Computing. (R Foundation for 

Statistical Computing Publishing: Vienna, Austria) 

Reynolds A, Richards G, De la Iglesia B, Rayward-Smith V (1992) Clustering rules: A comparison of 

partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and 

Algorithms 5, 475–504  

Ridgeway G, others wcf (2013) gbm: Generalized Boosted Regression Models. 

http://www.meteofrance.com/
http://www.promethee.com/


 Chapter 3 - Fire Management 

 

 Advances in Forest Fire Research – Page 708 

 

San-Miguel-Ayanz J, Manuel Moreno J, Camia A (2013) Analysis of large fires in European 

Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology and Management 

294, 11-22. 

Sande Silva J, Rego F, Fernandes P, Rigolot E (2010) Towards Integrated Fire Management - 

Outcomes of the European Project Fire Paradox. (Joensuu) 

Van Wagner C (1987) Development and structure of the Canadian Forest Fire Weather Index System. 

Canadian Forestry Service (Ottawa) 

 

 

 




