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Abstract 
Currently available satellite active fire detection products from the VIIRS and MODIS instruments on polar-
orbiting satellites produce detection squares in arbitrary locations. There is no global fire/no fire map, no 
detection under cloud cover, false negatives are common, and the detection squares are much coarser than the 
resolution of a fire behavior model. Consequently, current active fire satellite detection products should be 
used to improve fire modeling in a statistical sense only, rather than as a direct input. We describe a new data 
assimilation method for active fire detection, based on a modification of the fire arrival time to simultaneously 
minimize the difference from the forecast fire arrival time and maximize the likelihood of the fire detection 
data. This method is inspired by contour detection methods used in computer vision, and it can be cast as a 
Bayesian inverse problem technique, or a generalized Tikhonov regularization. After the new fire arrival time 
on the whole simulation domain is found, the model can be re-run from a time in the past using the new fire 
arrival time to generate the heat fluxes and to spin up the atmospheric model until the satellite overpass time, 
when the coupled simulation continues from the modified state. 
 
Keywords: VIIRS, MODIS, WRF, WRF-SFIRE, Data assimilation, Fire spread, Fire detection likelihood, Fire 
arrival time, Least squares, Maximum-a-Posteriori estimate, Tikhonov regularization, Bayesian 
 
 
1. Introduction  
 
Active fire detection products using the VIIRS and MODIS instruments provide planet-wide 
monitoring of fire activity several times daily as detection squares or polygons at a resolution of 375 
m to 1 km. Because the data products are continuously available online, they present an attractive 
data source for automated fire behavior simulations and forecasts. Unfortunately, fire detection 
errors are frequent (Csiszar et al., 2012; Hawbaker et al., 2008; Sei, 2011), and geolocation errors 
can be significant, up to 1.5 km (Sei, 2011). An improved data product at 375 m resolution and with 
better error rates exists (Schroeder et al., 2014), but it is not available for general use yet. In any 
case, satellite active fire detection data have significant error rates, and they have much coarser 
resolution than the resolution of fire behavior models, which is typically few meters to tens of 
meters.  
Fire detection data consist of squares or polygons (from now on, squares) with associated satellite 
overpass times. A fire detection square means that a fire of sufficient intensity and size was detected 
somewhere in the square; it does not mean that the whole square is burning. The fire detection 
squares are in arbitrary locations; a global fire-detection map where every pixel is marked as either 
fire or no fire is “neither required nor desired” by VIIRS Active Fires specifications (Sei, 2011). In 
addition, an existing fire is often not detected (a false negative). For example, MODIS has a 50% 
probability of detecting a 100m2 flaming fire (Giglio et al., 2003). The improved 375m VIIRS 
product has 50% probability of detecting about a 2 m2 flaming fire at night, and about 40 m2 flaming 
fire during the day of (Schroeder et al., 2014). False positives are possible, particularly in areas of 
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high contrast (the data products’ algorithms are contextual), but less frequent. Finally, if a location is 
under cloud cover, the fire detection is turned off completely. Unfortunately, the cloud mask used 
was not provided in the data products we found, so we could not distinguish between missing data 
and negative fire detection.  
Consequently, current satellite fire detection products do not determine the fire area and the fire 
perimeter to a degree that could be relied upon. Although the use of satellite fire detection to 
initialize a fire simulation directly was an important advance (Coen and Schroeder, 2013), satellite 
fire detection is better suited to improve a fire behavior simulation in a statistical sense only, that is, 
by data assimilation. Data assimilation fuses the forecast obtained from a model with the data by 
balancing their uncertainties, and it can also take advantage of more reliable fire detection in future 
by putting more weight on the data and less weight on the model. 
Data assimilation modifies the state of the simulation in analysis cycles. Each cycle consists of 
advancing the model in time and an analysis step, which takes account of the new information. The 
analysis cycles steer the simulation periodically and help to avoid an accumulation of modeling 
errors. Analysis steps at every satellite overpass also help to account for uncertainties caused by 
incorrect fuel information and by fire-fighting efforts. We propose a new data assimilation method 
for satellite fire detection, inspired by techniques used for contour detection in computer vision, such 
as in the Microsoft Kinect (Blake, 2014). The method takes advantage of encoding the state of the 
fire propagation as the fire arrival time (Finney, 2002), which can be modified by an additive 
correction. We employ a Bayesian approach and obtain a Maximum-a-Posteriori (MAP) estimate as 
a solution of a generalized nonlinear least squares problem, similarly as in Stuart (2010), to 
simultaneously maximize the log likelihood of the fire detection (or lack od detection) and minimize 
the change in the fire arrival time. The method is implemented efficiently using Fast Fourier 
Transform (FFT), and its computational cost is negligible compared to the coupled atmosphere-fire 
simulation itself. 
Another challenge of data assimilation in coupled fire-atmosphere models is how to change the state 
of the atmospheric model when the state of the fire model changes in response to data. Atmospheric 
circulation evolves in response to the heat flux from the fire over time, and when the state of the fire 
model changes, the consistence between the state of fire and the state of the atmosphere is lost. 
Encoding the fire model state as the fire arrival time allows to go back in time, blend the new fire 
arrival time with the original one, and spin up the atmospheric model with heat fluxes generated by 
replaying the modified fire arrival time instead of running the fire propagation model itself (Mandel 
et al., 2012). Then, at the fire detection time (the satellite overpass time), the fire spread model takes 
over, and the simulation continues. 
 
2. Methods 

 
2.1. Fire detection data likelihood 

We assimilate the fire detection data in the form of a likelihood of the detection data at a location 
. The data likelihood is proportional to e f ( t ,x ,y ) , where t  is the number of hours the fire has 

arrived at the location  before the satellite overpass time. The function  is called log 
likelihood. For locations  within the fire detection squares, the data likelihood should be high 
when the fire has arrived recently, and low otherwise. For locations outside of the fire detection 
squares, the data likelihood should be high if the fire has not arrived yet, or has arrived long ago, and 
low if the fire has arrived at the location recently. Of course, this is a very simplified view; more 
accurately, the fire detection data likelihood depends on the fire behavior (some fires burn longer and 
can be detected longer after the fire arrival, and some only for a shorter time), the atmospheric state 
between the fire location and the satellite, and the properties of the sensor and processing algorithms. 
Some active fire detection products also provide a level of confidence, e.g. Schroeder et al. (2014), 

(x, y)
(x, y)

(x, y
f (t,x, y)
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which should be a part of the calculation of the data likelihood. In this paper, however, we consider 
only a simple data likelihood functions modelled as in Figure 1. 
 

Figure 1. The log likelihood function  (left) and its derivative   (right) as a function of time f (t) f '(t) t   elapsed since 
fire arrival (hours), in locations inside and outside of fire detection squares. 

The model log likelihood  shown in Fig. 1 is a function with continuous first derivative in the 
time  since fire arrival, and it is specified by parameters T . Within the fire 

detection squares, we choose  for 
min ,  Tmax ,  Tpos ,  Tneg ,  ψ > 0

f (t) = 0 Tmin ≤ t ≤ Tmax, the function  is a quadratic polynomial 
for t T< min  with , and a quadratic polynomial for tf (Tmin −Tneg ) = −1 > Tmax f (T with . 

Outside of the fire detection squares, 
max +Tpos ) = −1

f (t) = −ψ  has a constant negative value for Tmin ≤ t ≤ Tmax, 
 for t or , and  is blended by cubic polynomials in between. 

However, if the location is under a cloud cover, we would use
< Tmin − 2Tneg  t > Tmax + 2Tpos

f (t) = 0 for any t. 

f
t

=

f

f (t) 0 f

For the sake of simplicity, the data likelihoods at different locations are assumed to be 
independent. Then, the overall data likelihood of all detection squares at the satellite overpass time 

 over the whole simulation domain, given fire arrival time T = T (x, y) , is proportional to the 
product of the data likelihoods at all grid nodes . We also weigh each log likehood by the cell 
area , which gives 

(x, y)
ΔxΔy

T S

 p(detection squares |T ) ∝ e f (T S−T ,x ,y )ΔxΔy

( x ,y )
∏ = e

f (T S−T ,x ,y )ΔxΔy
( x ,y )
∑

≈ e f (T S−T ,x ,y )dx dy∫ , (1) 

with the understanding that the integral is computed numerically over the fire simulation domain. 
 

2.2. Analysis step 
 
In the analysis step, the data likelihood (1) is combined with the forecast fire arrival time 

 to obtain the analysis fire arrival time T f = T f (x, y) T a . For this purpose, we need the probability 
density of the forecast fire arrival time. We assume that the difference of the fire arrival time from 
the mean fire arrival time is a smooth random function, and we model the probability density of 
the fire arrival time as Gaussian, with mean  and covariance A−1 such that the associated norm  

u
A
= u, Au

1/2
 

T f

T f

is small for spatially smooth functions u, defined on the model grid, and large for oscillatory u. For 
this purpose, we choose the covariance  as a negative power of a discretization of the Laplace 
operator 

A−1
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Δu = ∂2u
∂x2 +

∂2u
∂y2  

on the model grid, multiplied by a penalty parameter.  Thus, the forecast probability density of the 
fire arrival time T  is 

pf (T ) ∝ e
−
α

2
T−T f

A

2

,   A = (−Δ) p ,   α , p>0. 
We also requite that the ignition time of the fire does not change, so  only if pf (T ) > 0 T = T f at the 
ignition point.  The analysis probability density is obtained from the Bayes theorem as 

pa (T ) ∝ p(detection squares |T ) pf (T ) ∝ e
f (T S−T ,x ,y )dx dy∫ e

−
α

2
T−T f

A

2

= e
f (T S−T ,x ,y )dx dy∫ −

α

2
T−T f

A

2

. 
 

The analysis distribution is non-Gaussian due to the presence of the data likelihood. To obtain a 
single analysis value, we use the standard Maximum-a-Posteriori estimator, which is the maximizer 
T a of the analysis probability density . Maximization of the analysis density is equivalent to 
the minimization of the exponent, which is the generalized least squares problem 

pa (T )

  J (T ) = ε
2

T −T f

A

2
− f (T S −T ,x, y)dx dy∫ → min

T : T=T f  at the ignition point
.   (2) 

Note that the optimization problem (2) can be also understood as the maximization of the log 
likelihood with a Tikhonov regularization by the added quadratic term. In this context, the matrix  
is chosen to penalize non-smooth increments T −T f .  To find a descent direction, consider the 
difference 

A

  

J (T + h)− J (T ) = α
2 A(T −T f + h),T −T f + h − f (T S −T − h,x, y)dx dy∫

  − α
2

A(T −T f ),T −T f − f (T S −T ,x, y)dx dy∫( )
= α A(T −T f ),h + ∂

∂t
f (T S −T ,x, y)dxdy,h∫ +O h

2( )
= ∇J (T ),h +O h

2( ),
 

which gives the gradient of J as  

∇J (T ) = εA(T −T f )− F(T ),   where F(T ) = ∂
∂t

f (T S −T ,x, y)dx dy∫  

is from now on called the forcing function. This gradient direction, however, is not suitable for our 
purposes, because it is not very spatially smooth, and, consequently, gradient descent iterations 
converge to the smoother solution of (2)  only very slowly and, in addition, they are liable to get 
caught in local minima. A better gradient direction is obtained by considering the gradient  
with respect to the inner product 

∇AJ (T )
u,v

A
= Au,v : 

∇AJ (T ),h
A
= A∇AJ (T ),h = ∇J (T ),h

∇AJ (T ) =α (T −T f )− A−1F(T ).  
Now we add the constraint that the increment is zero at the ignition point and introduce Lagrange 
multiplier 

h
λ , which leads to the saddle point problem 

     (3) 
ε Ah+Cλ = α A(T f −T )+ F(T )
CTh         = 0,
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for a descent direction h, where s a zero-one vector such that  i CTh = 0expresses the condition that 
h is zero at the ignition point. The saddle point problem (3) is easily solved with access to 
multiplication by A−1 only:  Calculating h from the first equation in (3) gives the descent direction 

  
h = T f −T +α −1A−1F(T )−α −1A−1Cλ = −α −1 ∇AJ (T )+ A−1Cλ( ), 

where the Lagrange multiplier is determined by substituting in the second equation, which gives 

λ = CT A−1C( )−1
CT α (T f −T )+ A−1F(T )( ) = CT A−1C( )−1

CT∇AJ (T ). 
Note that the descent direction h is obtained by a spatial smoothing of the forcing F(T), or, 
equivalently, from the gradient in the inner product defined by the inverse covariance A, plus an 
adjustment for the constraint that the fire arrival time at the ignition location should not change. In 
each step of the descent method, the cost function  is then minimized by a line search over 

  T + hτ ,  τ  real. The first iteration starts from T = T f . Note that the penalty parameter α  does not 
have any effect on the first search direction. 
 
3. Results 
 
The method is illustrated on two real fires simulated by WRF-SFIRE, with the assimilation of 
MODIS and VIIRS Active Fire detection data. WRF-SFIRE (Mandel et al., 2009, 2011) builds on 
CAWFE (Clark et al., 2004), and it is available from openwfm.org. A limited version from 2010 is 
currently distributed in WRF release as WRF-Fire (Coen et al., 2013).  
In both examples below, we have used the parameters 

α = 1000,  Tmin  =  0.5,  Tmax  =  10,  Tpos  =  10,  Tneg  =  5,  ψ  =  0.5,  p =  1.02 . 
 

3.1. 2012 Wood Hollow fire 
The present data assimilation method was applied to adjust the fire arrival time obtained from a fire 
simulation up to 24th Jan 2014 23:45 UTC, from 151 MODIS fire detections, which occurred on the 
same day approximately at 20:00 UTC (Figure 2). The practical implementation of the method 
implements a line search strategy, in which a maximal step is set (here, 1.0) and the objective 
function is sampled 6 times in regular intervals. The step with the lowest objective function value 
and its two neighbors are selected as the new limits and the line search is repeated to determine the 
best step size with more precision.  
In this instance, only the first iteration resulted in an improvement of the objective function, a line 
search along the second direction did not yield any more improvements, even for smaller step sizes. 
However, the single iteration has already found a satisfactory modification of the fire arrival time. 
The seemingly large value of the penalty parameter α  was needed to stop the method from adjusting 
the fire arrival time in later iterations near the fire detection squares only. 
 

3.2. 2012 Barker Canyon fire 
The data assimilation method was applied to a simulation of the 2012 Barker Canyon Fire, 1.71 

days from ignition. Figs. 3-6 show how the analysis fire arrival time is obtained from the forecast by 
adding a correction in the direction of a smooth search direction, which is in turn obtained by the 
spatial smoothing of the forcing function. Again, a single iteration was sufficient to find a 
satisfactory solution. 
 
   

C
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Figure 2. Data assimilation for the 2012 Woods Hollow fire, simulated by WRF-SFIRE, with MODIS Active Fire 
detection squares. The black contour is the actual fire perimeter on 25th Jun 2012, the red line is the forecast fire 

perimeter and the green line is the fire perimeter after assimilation, or the analysis. The analysis adjusts the shape of 
the fire for the fire detection data by a smooth correction, which automatically fills the fire arrival time between the 

detection squares. 
 

 

Figure 3. Forecast fire arrival time for the 2012 Barker fire, simulated by WRF-SFIRE, and VIIRS Active Fire 
detection squares. The black contour is the simulated fire perimeter at the satellite overpass time. The color bar shows 

fire arrival time in days before the end of the simulation. The axes are longitude and latitude. 
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Figure 4. Forcing function F for the forecast in Figure 3. Positive values mean that the fire arrival time at the 
location should be adjusted down, while negative value mean that the fire arrival time should be adjusted up. The 

black contour marks the locations where the forcing is zero. Note that the forcing has jumps at the boundaries of the 
detection squares. 

 

 

Figure 5. Search direction for the forecast in Figure 3. The forecast fire arrival time will be adjusted by a positive 
multiple of the search direction. In particular, the fire arrival time at the location of the detection squares colored in 

blue may be decreased, so the fire will be there at the satellite overpass time. The black line marks the locations where 
the search direction is zero. 
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Figure 6. Analysis for the forecast in Figure 3. The method has filled in the fire arrival time based on the forecast 
from the model and incomplete information from the fire detection squares. The black contour is the resulting 

analysis fire perimeter. 

 
4. Conclusion 
 
We have described a new methodology to assimilate satellite active fire detection data into the state 
of a fire spread model, which is encoded as the fire arrival time. The methodology relies on standard 
Bayesian framework of data assimilation, which leads to a nonlinear least squares problem to 
simultaneously minimize the change of the fire arrival time from the forecast in a suitable norm 
(which penalizes spatially smooth changes less) and maximize the integral of the log likelihood of 
the fire detection (or non-detection) over the fire simulation domain. An efficient method to solve 
such problems was presented, which generates smooth increments and it found good approximate 
solutions in a single gradient descent iteration. 
There are many uncertainties affecting fire spread simulations. They are associated with limitations 
of the fire spread and atmospheric models as well as limited accuracy in the estimate of the initial 
state of the fuel and atmosphere. As the length of the atmospheric simulation grows, its accuracy 
deteriorates, and as a consequence, the errors in the fire spread prediction also grow. The presented 
method allows for objective corrections of the simulated fire progression based on the assimilation of 
the satellite fire detection data. As the simulation period extends, also more satellite data showing the 
fire progression becomes available, so the simulated fire may be cyclically nudged to the 
observations. The method was illustrated on two examples, in which just a single arrival time 
adjustment to the coupled atmosphere-fire simulations by WRF-SFIRE was made. The same method, 
however, can be also used for cyclic corrections of the simulated fire progression, where the model 
continues its fire progression from the adjusted fire state till the new observations become available. 
A spin-up of the atmospheric state is then needed to restart the coupled model from the modified fire 
arrival time. An illustration of the cyclic application of this method will be presented elsewhere. 
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