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Abstract 
Wildfire risk assessments in Spain usually make little or no reference to the uncertainty of the results due to 

ignition data quality, or the implications that this potential uncertainty may have on wildfire management 

decisions. In Spain the autonomous regions have historically been the competent authorities in forest 

management and environmental protection as a result of the 1978 Constitution and, therefore, responsible on 

the operational application of the criteria defined for the country for wildfire classification and location. This 

competency framework has generated significant regional differences in the application of the criteria for 

wildfire classification among the different autonomous regions, arising potential uncertainty on wildfire 

assessments and fire risk models based on this historical series of data. This work explores six scenarios based 

on the classification of fire ignition causes and location data, reported in the General Statistics of Wildfires 

database (EGIF), to address the potential uncertainty from the point of view of the variability in predicted 

ignition probability and the changes in its spatial patterns. The analysis is focused on analyzing the effects on 

human-caused wildfires by using Random Forest algorithms to predict the ignition likelihood and cluster and 

outlier analysis (hot and cold spot) to detect changes in the spatial pattern of probability. Results suggest that 

there is significant uncertainty both in predicted human-caused ignition and spatial pattern related to the ignition 

source and location of fire events compiled in the EGIF database. The accuracy of the predictions ranges from 

AUC values of 0.90, when considering most of the records of the database, to around 0.76 in scenarios 

characterized by using only known-caused allocated fire events, probably due to differences in the proportions 

of unidentified and allocated fires within the mainland Spain. 
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 Introduction 

  

During the last decades, the Spanish forest fire authorities have encouraged the investigation of fire 

causes, which is decisive to better understand patterns of fire occurrence and improve fire prevention 

measures (Martínez et al., 2009). However, the 29% of the fire causes remain unidentified in the period 

1988-2007. According to Lovreglio et al. (2006), little is known about wildfire causes, which often 

are more diverse than what is assumed by the traditional classifications employed for statistical 

purposes. In face of the arising uncertainties, a better knowledge on spatial patterns of fire occurrence 

and their relationships with its underlying causes becomes a necessity to locate and make prevention 

efforts more efficient (Martínez et al., 2009). From a scientific perspective, improving decision quality 

in natural resource management begins with uncertainty management (Borchers, 2005). Uncertainty 

is essentially a lack of information; complete ignorance represents one end of the spectrum and perfect 

information (i.e., certainty) the other (Thompson and Calkin, 2011). However, viewing uncertainty as 

‘information about information’ may be the first step in transforming a problem into knowledge 

(Bradshaw and Borchers, 2000). 

The aim of this paper is to deal with the potential uncertainty linked to location and ignition cause of 

wildfires, with special attention to the human-caused fires in the mainland Spain. The analysis of 

human factors in forest fire is widely recognized as very critical for fire danger estimation (Kalabokidis 

et al., 2002; Martínez et al., 2009), especially in human-dominated landscapes where anthropogenic  
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ignitions widely surpass natural ignitions, like the peninsular Spain (Amatulli et al., 2007; Chuvieco 

et al., 2010; Chuvieco et al., 2012). 

In Spain, fire events are recorded in the General Statistics of Wildfires database (EGIF). The EGIF 

database is one of the oldest ‘complete’ wildfire databases in Europe, beginning in 1968 (Vélez, 2001), 

though its data is not considered as completely reliable until 1988 (Martínez et al., 2009). The database 

is compiled by the Ministry of Environment, Rural and Marine affairs (MARM) using forest fire 

reports of the autonomous regions (Moreno et al., 2011). The autonomous regions have received 

competition in forest fires from the 1978 Constitution (article 148), and therefore are responsible of 

the application of the criteria and procedures defined for the entire national territory concerning 

wildfire classification and location. However, the fact that there is no single administration responsible 

on this topic has led to differences in the application of the criteria among the autonomous regions. A 

quick overview on the data collected in the historical database arises some inconsistences in the 

reported information. For instance, the proportion of unknown causes or the proportion of correctly 

located fire events (located with coordinates) differs from one region to another, becoming a potential 

source of uncertainty. This is especially important since research on forest fires in Spain is made from 

data collected in the EGIF database (Amatulli et al., 2007; Chuvieco et al., 2010; Chuvieco et al., 

2012; de la Riva et al., 2004; Martinez et al., 2009; Padilla and Vega-García, 2011; Rodrigues et al., 

2014; Rodrigues and de la Riva, 2014). Notwithstanding, the influence of uncertainty in historical fire 

data is scarcely considered (or at least not specifically addressed) and is mainly focused on location 

precision rather than ignition cause (Amatulli et al., 2006; Amatulli et al., 2007). Assessing the effects 

of uncertainty of Spanish ignition data is particularly interesting since it is a component of the wildfire 

information compiled European Forest Fires System Database (EFFIS), thus analyzing the effects of 

uncertainty at the Spanish level could be very helpful to understand wildfire patterns in the European 

scale, even more since Spain is the more fire-affected country within the European Union (Rodrigues 

et al., 2013). 

In this work, we will explore six scenarios based on the classification of ignition causes and location 

data reported in the EGIF database to assess the potential uncertainty from the point of view of the 

variability in predicted ignition probability and changes in the spatial pattern of probability. 

The occurrence probability will be calculated using Random Forest (RF) algorithms (Breiman, 2001) 

whereas the changes in the spatial probability patterns will be addresses through local Hot Spot 

analysis. RF algorithms have proved to be a useful tool for wildfire modeling (Bar Massada et al., 

2012; Rodrigues and de la Riva, 2014), improving the performance of traditional regression techniques 

(e.g. logit Generalised Linear Models). The comparison of the proposed occurrence scenarios is 

conducted from the point of view of the accuracy in the classification based on a k-fold procedure 

(Fielding and Bell, 1997) and according to the variation in variable importance (Breiman, 2001). On 

the other hand, Hot Spot methods are one of the most adequate for the analysis of large-scale fire 

occurrence patterns (Allgöwer et al., 2005). The analysis of the changes in the predicted ignition 

probability patterns in each scenario is carried out by cluster and outlier analysis through the Anselin’s 

Local Moran's I (Anselin, 1995).  

 

 Materials and methods 

 

 Study area and fire data 

The study area covered the whole mainland Spain excluding the Balearic and Canary Islands as well 

as the autonomous cities of Ceuta and Melilla, due to the lack of data in those areas. Thus the total 

area of the study region was around 498 000 km2. The fire events considered in this work are those 

occurred during the period 1988-2007.  
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 An overview to the EGIF database 

The EGIF database is compiled by the Ministry of Environment, Rural and Marine affairs (MARM) 

using the forest fire reports from the autonomous regions. The database classifies each fire event 

following a hierarchy of criteria which first differences between known (K) and supposed (S) cause 

and then into the most likely ignition source (natural or human). In turn, the ignition source is classified 

according to six categories: natural (lightning; L), human (negligence, accident or arson; H), restarted 

fires (R) and unknown or unidentified fires (U). Ideally, only K fires should be considered when 

developing any kind of fire analysis as they appear to be the most reliable. However, an insight into 

the classification of fire events in terms of number of fires in each category (Table 1) reveals that the 

proportion of fires with a S cause is more than 73 % of the total number of fires in the period 1988-

2007. Hence, by excluding S fires the majority of fire events are being discarded (Figure 1). 

Table 1. Classification of fire events according to its ignition causes (number of fires). 

 Lightning Human Unknown Restarted All 

Known 6775 35443 30952 1957 75127 

Supposed 7931 228694 44706 2420 283751 

Total 14706 264137 75658 4377 358878 

 

This classification system also influences the proportion of fires according to its ignition source. 

Attending to K source, L fires represent the 9% of the occurrence whereas H fires are only the 47%. 

The remaining fires mostly correspond to U sources. This proportion changes drastically when S cause 

fires are accounted for, decreasing the proportion of L fires to 4% and raising H fires to a 73%. 

However, this 73 % of H fires is still far from the 90% value usually reported for Mediterranean 

European Countries (San-Miguel-Ayanz et al., 2012; San-Miguel-Ayanz, 2009) and, particularly, for 

Spain (Martínez et al., 2009). This fact suggests that there is great amount of U fires potentially related 

to H ignition factors and thus, when excluding unknown fires in human-caused wildfire assessments, 

a significant part of the human occurrence is not taken into account. However, while U fires are quite 

important attending to national overall values, mapping the spatial distribution of these proportions 

uncovers the existence of high spatial heterogeneity, increasing the uncertainty on the data (Figure 1).  

On the other hand, a second source of uncertainty is related to the location of fire events. In the EGIF 

database wildfires are located following to different procedures: (i) geocoding the location on the basis 

of a reference 10x10 km ICONA grid (used by the firefighting services for approximate location of 

fire events) and the municipality origin of the ignition; and (ii) georeferencing fire events using spatial 

coordinates. Again, the existence of coordinates should imply a precise allocation of the ignition 

points, however not all the fire events are georeferenced –only the 11% (Table 2)– and, as in the case 

of the ignition source, the proportion of fire events with coordinates varies from one region to another 

(Figure 2). This situation usually led to face the spatialization of the fire occurrence using geocoded 

location information (Amatulli et al., 2007; Chuvieco et al., 2010; Chuvieco et al., 2012; de la Riva et 

al., 2004; Martínez et al., 2009). On top of this, sometimes the assigned coordinates are incorrect. For 

instance, 2267 fires are located outside Spain, 23 are assigned a wrong UTM zone and 757 are located 

in the exact intersection of the ICONA grid (Table 2). This means that the 7.6% of the forest fires with 

spatial coordinates are mistakenly allocated. 

Table 2. Number of fires with coordinates and wrong located wildfires. 

 Located Outside Wrong zone Intersects Grid Total incorrect 

Known 16435 962 18 347 1327 

Supposed 23581 1305 5 410 1720 

Total 40016 2267 23 757 3047 
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Figure 1. Spatial distribution of wildfires. Left total number of fires, right K fires. 

 

 

Figure 2. Spatial distribution of the proportion of points with coordinates. Total number of fires (left), fires with 

known cause (right). 

 

 EGIF scenarios 

In this work, we explored six scenarios based on the classification of ignition causes and location data 

reported in the EGIF database. The proposed scenarios were constructed to simulate the most probable 

assumptions to select an occurrence sample for wildfire modeling purposes. The criteria followed to 

design the scenarios were based mainly in three parameters: certainty of the cause (known or 

supposed), certainty of the source (human or unknown) and presence of coordinates. Thus, the 

proposed scenarios are: 

• Scenario 1: this scenario considers all human-caused fires, including both known and supposed 

cause, and a proportion of unknown fires according to the observed proportion of human-

caused fires in the corresponding autonomous region. 

• Scenario 2: this scenario considers all human-caused fire, including both known and supposed 

cause, excluding those fires with an unknown source. 
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• Scenario 3: this scenario considers all human-caused fire, but only those with known cause, 

excluding fires with a supposed cause, but including a proportion of unknown fires according 

to the observed proportion of human-caused fires in the corresponding autonomous region. 

• Scenario 4: this scenario considers all human-caused fire, but only those with known cause, 

excluding fires with a supposed cause or an unknown source. 

• Scenario 5: this scenario considers all human-caused fire, including both known and supposed 

cause located using coordinates, excluding fires with an unknown source or those which are 

wrongly located according to Table 2. 

• Scenario 6: this scenario considers all human-caused fire, but only those with known cause and 

located using coordinates, excluding fires with a supposed cause, an unknown source or those 

which are wrongly located according to Table 2. 

 

 Wildfire modelling 

The assessment of human-caused wildfire occurrence was carried out using RF algorithms an 

ensemble classifier which uses decision trees as base classifiers (Breiman, 2001).  

The dependent variable for each scenario was constructed by selecting human-caused fires (e.g. 

negligence, accident or arson). Then wildfires were spatialized through the assignment of each fire to 

its respective combination of ICONA grid, municipality and forest perimeter (Amatulli et al. 2007; 

Chuvieco et al., 2010,2012; de la Riva et al., 2004; Rodrigues et al., 2014; Rodrigues and de la Riva, 

2014). This allowed the calculation of fire density maps at a spatial resolution of 1 Km2 by overlaying 

the random point cloud with the Spanish 1x1 Km UTM grid. The dependent variable was developed 

for each scenario by classifying the occurrence values into two categories: high occurrence (presence) 

in locations with two or more fires, and low occurrence (pseudo-absence or background) in locations 

with only one fire.  

The explanatory variables were selected based on the experience of the authors in models at regional 

and national scales (Amatulli et al., 2007; Chuvieco et al., 2010, 2012; de la Riva et al., 2004; Martínez 

et al., 2009; Rodrigues et al., 2014; Rodrigues and de la Riva, 2014). The predictive variables 

considered were: wildland-agricultural interface (WAI), wildland-urban interface (WUI), density of 

agricultural machinery (DAM), changes in demographic potential 1991-2006 (CDP; Calvo and Pueyo, 

2008), protected areas (PA), forestry area in public utility (FAPU), forestry tracks (TRCK), railroads 

(RRDS) , power lines (PWR) and land use change 1991-2006 (LUC). 

The comparison of the outputs (predicted probability of occurrence) from each proposed scenario was 

conducted from the point of view of the accuracy in the classification based on a k-fold cross-validation 

procedure (Fielding and Bell, 1997) and according to the variation in the variable importance 

(Breiman, 2001). In k-fold cross-validation, the original sample is randomly partitioned into k equal 

size subsamples (k=5 in this work). Each time, one of the k subsets is used as the test set and the other 

k -1 subsets are putted together to conform the training set. The cross-validation process is then 

repeated k times (the folds), with each of the k subsamples used exactly once as the validation data. 

The k results from the folds then can be averaged to produce single error estimation (Bar Massada et 

al., 2012).  

Variable importance assessment was carried out by summarizing the influence of the explanatory 

variables according to the increase in mean square error (IncMSE) and the increase in node purity 

(IncNP). IncSME is defined as the increase in the mean of the error of a tree in the forest when the 

observed values of this variable are randomly permuted in the out-of-bag samples. IncNP is measured 

using the Gini criterion, from all the splits in the forest based on a particular variable (Breiman, 2001). 

The variability in variable importance was addressed through the fluctuations in the ranks obtained by 

ordering the explanatory variables from more to less importance according to IncSME and IncNP. 

 

 

 



 Chapter 4 - Fire Risk Assessment and Climate Change 

 

 Advances in Forest Fire Research – Page 1066 

 

 Spatial variation in the ignition probability patterns 

Changes in the spatial probability patterns were addressed through local Hot Spot analysis, one of the 

most adequate for this purpose (Allgöwer et al., 2005). The assessment of changes in the spatial pattern 

of predicted probability was based on the assumption that one of the key factors in wildfire 

management was guiding governments or responsible authorities through prioritization across fires 

and resources at risk. We considered that the identification of areas with high values of occurrence 

probability (Hot Spot) is linked to the identification of priority intervention areas. 

The assessment of the changes in the predicted spatial pattern at each scenario is carried out by cluster 

and outlier analysis through the Anselin’s Local Moran's I (Cluster and Outlier Analysis). This kind 

of analysis allows identifying and allocating Hot Spot areas as well as characterizes its typology of 

cluster. Given a set of weighted features, the Cluster and Outlier Analysis tool identifies clusters of 

features with values similar in magnitude. The tool also identifies spatial outliers. To do this, the tool 

calculates a Local Moran's I value, a Z score, a p-value, and a code representing the cluster type for 

each feature. The Distance Band or Threshold established for the cluster detection was 10 km. The 

results were mapped according to the significant detected cluster typology: Hot Spot (HH), Hot Spot 

surrounded by Cold Spot (HL), Cold Spot (LL) and Cold Spot surrounded by Hot Spot (LH). 

 

 Results  
 

 Predicted probability of occurrence 

There is high variability (and therefore uncertainty) in predicted probability values among the six 

scenarios (Figure 3). In general terms, scenarios characterized by the use of both K and S causes, 

mainly scenarios 1 and 2, show high performance with AUC values stand above 0.9 (McCune et al., 

2002). Scenarios 2 and 3, where the occurrence used to construct the dependent variable only consider 

K causes are less accurate (AUC near 0.83) and values in the high probability interval (0.8 to 1) are 

almost inexistent. Scenarios where the ignition points are georeferenced using coordinates show the 

poorest accuracy and probability values are grouped in the first interval (0 to 0.2). In addition, the 

range of AUC values (difference between minimum and maximum value) shows a similar behavior, 

with lower values in scenarios 1 and 2, and increasing until scenarios 5 and 6. This means that the 

models fitted using a dependent variable constructed with both K and S causes are more stable and 

therefore more reliable. Table 3 summarizes the obtained AUC values. On the other hand, the same 

comportment is observed when considering the values of Max TPR+TNR. This parameter represents 

the best threshold to distinguish between presence/absence according to the maximum value of the 

kappa index i.e. the highest values of true positive rate (TPR) and true negative rate (TNR). In general 

terms, the higher the threshold the higher the accuracy of the model since it means that the model 

distinguish more efficiently between presence and background values. 

The uncertainty observed in the probability values is also detected in the contribution of the 

explanatory variables for each scenario. Although the variability is higher in the importance ranks for 

IncSME than in IncNP (Table 4) there is a general tendency to promote always the same variables: 

DAM, CDP, WAI, PA and TRCK (the later only is observed in the IncNP). The rest of the variables 

are swapping ranks among the different scenarios. 

 

Table 3. Summary of k-fold validation with k=5. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Max AUC 0.908 0.904 0.838 0.844 0.845 0.784 
Min AUC 0.906 0.899 0.827 0.829 0.821 0.746 

Max TPR+TNR 0.341 0.324 0.125 0.146 0.123 0.062 
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Table 4. Importance ranks for the explanatory variables. Top IncSME, bottom IncNP. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 scenario5 Scenario 6 ranks 

DAM 1 1 1 1 1 1 0 

CDP 2 2 2 2 2 3 1 

WAI 3 3 4 5 6 5 4 

PA 4 4 3 3 3 4 3 

FAPM 5 5 6 7 4 2 5 

WUI 6 6 5 4 5 6 3 

RAIL 7 8 7 6 7 9 4 

PWL 8 9 9 8 9 8 2 

LUC 9 10 10 10 10 10 2 

TRCK 10 7 8 9 8 7 4 

        

DAM 1 1 1 1 1 1 0 

CDP 2 2 2 2 2 2 0 

WAI 3 3 3 3 3 3 0 

PA 5 5 5 5 5 5 0 

FAPM 6 6 7 7 8 7 3 

WUI 10 10 10 10 10 10 3 

RAIL 9 9 9 9 7 8 3 

PWL 7 7 6 6 6 6 2 

LUC 8 8 8 8 9 9 2 

TRCK 4 4 4 4 4 4 0 
 
 

 Variation in spatial patterns of probability 

Figure 4 shows the spatial distribution of the cluster characterization of the predicted probabilities. In 

the same way that occurs in the predicted probability of occurrence, there is high heterogeneity in the 

spatial pattern at each scenario. However, in this case a similar spatial pattern of cluster is observable 

among the six scenarios, with HH clusters in the northwest of the peninsula and the Mediterranean 

coast, HL clusters in Pyrenees and the central area of the peninsula and LH in the Cantabrian coast. 

However, the scenarios using known causes (scenarios 4 and 6) are presenting LL clusters in some 

regions of the Northwest of the peninsula which is not that would be expectable since this area presents 

the highest occurrence values (Figure 1). 
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Figure 3. Spatial distribution of the predicted probability values. Scenarios are ordered consecutively left-right-top-

bottom. 
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Figure 4. Spatial distribution of the cluster type. Scenarios are ordered consecutively left-right-top-bottom. 

 

 Discussion 

 

Multiple sources of uncertainty remain with regard to modelling wildfire occurrence (Thompson and 

Calkin, 2011). Therefore there is a need to better understand how uncertainty and errors propagate 

through models (Sullivan, 2009). As little is known about wildfire causes (Lovreglio et al., 2006) many 

authors have chosen to deal globally with human-caused fires, avoiding uncertain specifications of 

causes, and have been able to derive useful recommendations for management (Stephens, 2005). 
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Nevertheless, using a coherent framework informs management authorities by facilitating the 

identification of potential sources of uncertainty and the quantification of their impact. 

In Spain, near a 29% of the fire events in the period 1988-2007 have an unidentified cause and the 

remaining 71% are not fully reliable because the existence of certain degree of uncertainty regarding 

ignition source and location. This uncertainty is firstly detected while analyzing and mapping fire data; 

and secondly when occurrence data is used for wildfire modeling. Uncertainty is affecting both to the 

predicted probability values as well as the spatial pattern of probability.  

According to the results may vary greatly depending on to the assumptions made when constructing 

the dependent variable. Results suggest that the scenarios based on the consideration of all causes (K 

and S) as well as a proportion of the fires with a U source are more accurate, with AUC values above 

0.9. We believe that this is mainly because when considering the whole occurrence, the dependent 

variable is less ‘spatially biased’ since there is no partial criterion to leave out a particular set of fire 

events and, thereby, the spatial pattern should be closer to reality. It is expectable that the scenario 

with the less uncertainty in its occurrence data, i.e. a scenario with known causes and (scenario 6), 

would be the most accurate. However, the fact that there are differences in the proportions of 

unidentified and allocated fires within the Spanish peninsula is harming the quality of the data.  

In addition, there is also uncertainty in the contribution/importance of the predictive variables. This 

might be a big issue in research works aiming to determine the factors that are explaining wildfire 

occurrence because the assumptions made when constructing the dependent variable are influencing 

the contribution of the explanatory variables. 

 Regarding to the predicted probability spatial pattern, although the variability is lower than the 

detected in the case of the predicted probability, it is still great. As in the case of the probability of 

occurrence, scenarios based on the consideration of all causes (K and S) including a proportion of the 

fires with an unidentified source seem to be the most realistic approach. 

 

 Conclusions 

 

The lack of uniformity in the application of the criteria among the autonomous regions on forest fire 

management is a potential source of uncertainty for wildfire risk assessment which is affecting both 

the predicted probability values as well as the spatial pattern of probability. This is especially 

significant since research on forest fires in Spain is made from historical data collected in the EGIF 

database (Amatulli et al., 2007; Chuvieco et al., 2010, 2012; de la Riva et al., 2004; Martínez et al., 

2009; Padilla and Vega-García, 2011), being more affected the older the data, as technological 

advances have greatly contributed to improve the quality of the data (such as GPS measurements or 

database administration capabilities) and, thus, reducing the uncertainty. In any case, some studies 

have been able to derive useful recommendations for management avoiding uncertain specifications 

of causes (Stephens, 2005), addressing arising uncertainty in occurrence data can help improve 

assessments. 

The spatial distribution of wildfire ignition greatly varies depending on the assumptions made when 

considering the ignition cause and source, leading to different predictions. However, it is possible to 

determine the best scenarios for modeling wildfire occurrence or risk. According with our results the 

best choice is consider both K and S causes with a proportion of forest fires with unknown source. 

There is a big amount of unidentified fires potentially related to a human ignition source and thus, 

when excluding unknown fires in human-caused wildfire assessments, a significant portion of the 

occurrence is not accounted for. Considering this supposedly human-caused occurrence reduces the 

spatial biased conducting to more robust and reliable predictions.  

Uncertainty is also affecting the contribution of the explanatory variables. Results suggest that DAM, 

CDP, WAI and PA are the least sensitive variables to variations in the spatial distribution of the 

occurrence. 
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