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Abstract 
Biomass burning is a global scale phenomenon that affects annually around 3.5 million Km2. This phenomenon 

has a very critical relevance for vegetation dynamics, atmospheric emissions and carbon budgets, increasingly 

affecting human lives and property, particularly in catastrophic conditions (heat waves, drought, strong winds). 

Properly characterizing burned areas on a global scale has become a relevant factor when studying these 

processes. The Fire CCI project, in the framework of the ESA’s Climate Change Initiative, aims at providing 

consistent time series of burned areas (BA) globally, over the period 1995 to 2009. Global BA products are 

obtained by merging information from three sensors: the ATSR series, VEGETATION and MERIS. In this 

case, the algorithm developed to obtain burned areas from the MERIS sensor will be presented. The MERIS 

BA algorithm is based on MERIS reflectance bands, spectral indices and both post-fire and multi-temporal 

analysis controlled by HS locations. BA detection is performed in a two phase process: the first one aims to 

detect seed pixels while the second one will develop contextual criteria around these seed pixels. Global BA 

maps have been obtained with the MERIS algorithm for years 2006 to 2008. 
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 Introduction 

 

Fire is a key component of the carbon cycle affecting greenhouse gases and aerosols emissions to the 

atmosphere (Andreae and Merlet 2001; van der Werf, Randerson et al. 2010), as well as global 

vegetation dynamics (Kloster, Mahowald et al. 2012; Thonicke, Spessa et al. 2010). Therefore, it 

becomes highly critical to monitor fires on a global scale and to estimate their impacts through global 

climate model simulations, biogeochemical models and dynamic global vegetation models.  

Monitoring areas affected by biomass burning has been performed over the last decades using a wide 

variety of sensors, including very high-spatial resolution such as Ikonos for fine scales (Kachmar and 

Sanchez-Azofeifa 2006), high spatial resolution sensors such as Landsat-TM/ETM+ or SPOT-HRV 

for regional areas (Bastarrika, Chuvieco et al. 2011b; Pu and Gong 2004) and medium resolution 

sensors for continental to global studies (Chang and Song 2009; Chuvieco, Opazo et al. 2008; Giglio, 

Randerson et al. 2010; Roy, Boschetti et al. 2008; Tansey, Grégoire et al. 2008).  

In the context of the fire_cci project, the goal of this work is to present a global BA algorithm 

specifically designed for the ENVISAT MERIS sensor. MERIS was mainly designed for ocean colour 

applications, as it provides high spectral resolution in the range of the blue to the near infrared regions 

(Gower and Borstad 2004). The application of MERIS data to fire applications is scarce: identification 

of smoke plumes (Huang and Siegert 2004), discrimination of burn severity (De Santis and Chuvieco 

2007; Roldan-Zamarron, Merino-De-Miguel et al. 2006). Mapping BA with MERIS has only been 

performed at regional level (Oliva, Martin et al. 2011) using different vegetation indices while 

(González-Alonso 2009) combined fire hotspots from MODIS and NIR reflectance values from 

MODIS and MERIS imagery.  

The potentials of MERIS for improving current information of BA rely on its greater spatial resolution, 

complementing other existing global BA products, particularly in areas where under or 

overestimations have been shown (Chang and Song 2009), thus reducing the uncertainty of current 

collections. Furthermore, this sensor has a follow up version on the OLCI (Ocean and Land Colour 
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Instrument) on board Sentinel 3, scheduled for launch in 2015 as part of the EC Copernicus 

programme.  

 

 Methods  

 
The design of a global BA algorithm requires considering the great diversity of biomass burning 

conditions worldwide. The most extended approaches for mapping BA can be classified in two groups: 

those that use the thermal contrast of active fires (hot spots, HS) from the surrounding background 

(Giglio, van der Werf et al. 2005), and those based on reflectance changes caused by burning effects 

(changing of leaf and soil colour, leaf losses, char, etc) (Bastarrika, Chuvieco et al. 2011a; Roy, Jin et 

al. 2005). The former approach is more reliable because thermal radiance increases exponentially with 

temperature, while reflectance changes are more subtle. However, thermal signal lasts very shortly 

(minutes to hours), while the fires are active, where as post-fire reflectance changes are more lastly 

(days to years). In addition, BA mapping based on active fires only implies a sample of the total area 

burned (what is burning when the satellite observes the area), while reflectance changes cover the 

whole area affected by the fire.  

Considering the pros and cons of each approach, several authors have proposed hybrid algorithms, 

where HS information is used to guide somehow the analysis of reflectance changes in the 

discrimination of BA, particularly to avoid commission errors (i.e. reflectance changes caused by non-

fire causes, such as crop harvest, seasonal flooding, or topographic shade). After analyzing the spectral 

and temporal characteristics of MERIS, it was decided to follow a similar approach for developing the 

global BA algorithm, using a synergetic use of HS information derived from MODIS thermal data and 

temporal trends of MERIS reflectance bands. The hypothesis is that (Kaufman and Justice 1998) the 

combination of spectral reflectance information with active fires to identify BA should provide a more 

reliable discrimination of BA. In order to consider a proper balance between omission and commission 

errors, the algorithm includes two different phases (Chuvieco, Englefield et al. 2008): seed 

identification, which aims to minimize commission errors by selecting only those pixels more clearly 

burned, and contextual analysis, which applies region growing analysis to improve the delimitation of 

burned patches. 

The algorithm was developed and tested in 10 different study sites, which were selected to take into 

account the diversity of burning conditions worldwide, including different biomes and fire regimes 

(Figure 1). (Olson, E. Dinerstein et al. 2001) 

 

 

Figure 1. Study sites selection 
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 Generation of corrected reflectances and spectral indices 

Corrected MERIS reflectances were received from Brockman Consult. The pre-processing chain was 

based on the one developed for the Land CCI project with modifications to obtain daily reflectances 

instead of weekly composites as was required by this project. Geometric correction is obtained through 

the AMORGOS (Accurate MERIS Ortho Rectified Geo-location Operational Software), improving 

MERIS FR geolocation better than 70 RMS. Calibration and smile correction are also performed, as 

well as land water delineation, cloud screening and atmospheric correction. More details of these 

processes can be found in the ATBD from the Land CCI project (http://www.esa-landcover-cci.org/). 

The surface directional reflectances are floats between 0 and 1.0. As an output from the pre-processing, 

additional information layers are included with the MERIS images. Standard error associated to each 

band is provided. The angles are taken from the respective MERIS L1B input, sun and zenith viewing 

angles and sun and azimuth angles are provided in degrees. Also, a status layer is provided, with values 

1 (clear land), 3 (snow/ice), or 0 (i.e. water, cloud, no observation).  

In order to improve performance of the algorithm, the corrected reflectances were gridded into 10x10 

degrees tiles (3600x3600 pixels at MERIS spatial resolution). These tiles were the input files for all 

processes of the BA algorithm.  

The NIR region was selected as main input for the MERIS algorithm, since this spectral band has been 

shown to be highly sensitive to recent burns, especially when pre-fire fuel loadings are high and 

combustion produces large amounts of charcoal that are deposited on the ground (Pereira, Sa et al. 

1999). Both green and dry vegetation have substantially higher reflectance than recent burns in the 

NIR. The suitability of this band to detect burned areas has been shown in previous studies (Chuvieco, 

Martín et al. 2002; Koutsias and Karteris 2000; Trigg and Flasse 2001).  

In addition to the NIR band, we computed the Global Environmental Monitoring Index (GEMI) (Pinty 

and Verstraete 1992), which was proven the best performing to detect burned areas among the spectral 

indices based on the red-NIR space (Barbosa, Stroppiana et al. 1999; Chuvieco 2002; Chuvieco, 

Englefield et al. 2008; Martín, Gómez et al. 2005; Pereira, Sa et al. 1999). GEMI was computed as 

follows: 
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where NIR is the reflectance in the NIR (MERIS Band 10) and R is the reflectance in the Red (MERIS 

Band 8). 

The selection of MERIS Bands 8 (673.75 nm to 688.75 nm), and 10 (746.25 nm to 761.25 nm), was 

based on the results from (Oliva, Martin et al. 2011), which showed a better sensitivity of the short 

NIR bands (bands 9 to 12) over the long NIR bands (bands 13 to 15) to discriminate BA areas. 

Following their conclusions, band 10 was used for the NIR region and bands 8 and 10 for computing 

the GEMI index. 

 

 Generation of composites 

Temporal resolution of input data is quite relevant to build a global BA algorithm, since the analysis 

of post-fire reflectance may be easily contaminated by clouds or be affected by quick vegetation 

recovery. Therefore, the number of observations is a limiting factor for detecting fires in areas where 

images are not available for long periods of time. In order to improve spatial coherence of areas with 

low temporal continuity, monthly composites of near infrared reflectance (NIR) were generated. These 

composites were the basis for the two phases of BA detection. Composites were built for each month 

by selecting NIR information from a bi-monthly time space. This helps ensuring continuity in fire 

detection and is particularly relevant when a fire occurs in the final dates of a month.  
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The criteria for generating the monthly NIR-GEMI composites were chosen as to emphasize the 

sensitivity of the outputs to the burned signal. Two criteria were used: maximize the contiguity to fire 

dates and minimize the NIR signal. Since HS provide a very accurate estimation of burning dates 

(Boschetti, Roy et al. 2010), we first generated the composites selecting for each location the closest 

date to the closest HS. For doing so, a Thiessen matrix was created for each period, computing for 

each pixel the closest HS coordinates and labelling it with the date of that HS. For the Thiessen matrix 

we also considered HS located within a buffer of 0.5 degrees around the edges of each tile. This option 

mitigated potential continuity problems between tiles, when for instance a fire was in the edge between 

tiles.  

The second compositing criteria selected minimum NIR reflectance values of the temporal series. 

However, since low NIR can be caused also for other reasons (cloud or topographic shadows, for 

instance), instead of selecting the minimum NIR of the 60 day period, we chose the first minimum 

after the date stored in the Thiessen HS matrix , as this would select a more immediate value to the 

post-fire burn reflectance. If no minima exist after that date, then the second minimum was chosen. 

In addition to the monthly post-fire composites, an annual reference composite was created to help the 

contextual phase of the algorithm. This annual composite was obtained as the per pixel difference 

between the annual maximum GEMI value per year and the monthly GEMI composite. The former 

was created to obtain an estimation of the maximum annual greenness of each pixel time series. The 

expected change between that maximum value and the post-fire value (the GEMI monthly composite) 

should be the highest, which should emphasize post-fire spectral changes.  

 

 Seed selection 

The first part of the seed selection focused on generating statistics of burned and unburned areas for 

each tile, based on the composite NIR values and HS distribution. Since burned conditions may be 

very diverse worldwide, we tried to obtain regional-oriented NIR thresholds, which could be tailored 

to different post-fire reflectance conditions. Cumulative distribution functions (CDF) were created to 

establish discrimination thresholds of NIR values that would be better adapted regionally to separate 

between burned and unburned categories.  

The burned pixels to obtain the CDF of BA were obtained from the information provided by the 

MODIS HS to select the minimum NIR values. Since HS have an original resolution of 1000x1000 m, 

instead of assuming that all MERIS pixels covered by the HS are active fires, we assumed that the 

potential active fire (PAF) was more likely located where the MERIS NIR value was lowest in the 3x3 

window around the HS. To avoid commission errors, we introduced an additional temporal change 

constrain, and accepted only those PAF where NIR values were lower than in the previous period. 

Otherwise, the minimum NIR values were not considered PAF to build the CDF of the burned 

category. The CDF of the unburned category was generated from the values of those pixels that did 

not have any HS in a 64x64 pixel matrix and were not detected by the BA algorithm in the previous 

months.  

Specific discrimination thresholds were established for each tile and month. In order to compute them, 

the NIR threshold value of the burned category (TB) was defined as the decile of the burned pixels 

CDF that intersected the first decile of the CDF of unburned pixels (NIR values of burned pixels were 

expected to be lower than those of unburned ones) (fig 2). The more separated the CDFs between 

burned and unburned categories are, the higher the decile to define the burned category, as there are 

less chances of confusion with unburned category. On the opposite, the closer the CDFs the more pixel 

values are shared by the burned and unburned distributions, and therefore a more restrictive condition 

was chosen. It was considered a good discrimination between burned and unburned CDF when the 

threshold was established at 7 or more decile value, and bad discrimination otherwise. This 

classification was later used for phase 2 of the algorithm. 

 

Seed pixels of burned category were selected based on three criteria:  
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a) The NIR value was lower than the TB for each tile and period. 

b) At least one PAF should be found in a neighbour 9x9 matrix;  

c) NIR value for month n should be lower than NIR of month n-1. 

 

 

Figure 2. Threshold based on decile 10 of the unburned for a case with worse (left) and better (right) separation 

between classes for the Australian study site, correspondent to July & October 2005 respectively  

 

 Region growing 

Contextual algorithms have been previously used for BA mapping (Bastarrika, Chuvieco et al. 2011b; 

Pu, Li et al. 2007). The goal of these algorithms is to reduce omission errors from the seed phase, 

while avoiding increasing commission errors. One of the critical issues to obtain a good performance 

of these algorithms for BA mapping relies on obtaining a sound method to stop the region growing 

process (Zhang, Pavlic et al. 2005). 

Once the seeds were obtained, a region growing mechanism was applied to refine the characterization 

of burned patches. Only pixels surrounding the BA seeds were analyzed. This second phase of the BA 

algorithm included three conditions. These three conditions tried to account for a proper balance 

between extending the burned patches and avoiding commission errors. They were analyzed 

recursively around each seed pixel until their neighbour pixels did not meet them, which implied the 

end of the region growing process. If the criteria were met, the pixel will be included as seed and also 

its surrounding pixels will be studied. These criteria were: 

a) The NIR threshold values were reviewed for this phase. If the TB was based on decile 6 or 

lower, it was assumed that the discrimination between categories is not good enough to increase 

the threshold. In this case the value was kept as it was for the seed phase. Otherwise, we 

assumed a better discrimination of burned and unburned categories and therefore, the NIR 

thresholds were increased for the region growing process up to the TB found at decile 9. 

b) The decrease in NIR in burned pixels should be more negative than the threshold NIR decrease 

of unburned pixels. To define this new threshold we only considered those pixels more clearly 

unburned. We selected the first decile of the unburned CDF that has a higher value than decile 

9 of the burned curve. For all pixels that satisfy this condition the difference with the composite 

from the previous month was computed. A new curve is built with these values. The minimum 

drop is defined as the percentile 90 of this curve. 

c) Finally, the third condition was based on detecting the vegetation loss as a result of fire, based 

on the differences in GEMI values between the target monthly composite and the annual GEMI 

composites. This criterion was defined as 0.9 times the difference found in the GEMI value 

between the target pixel and those labelled as burned (either seeds or neighbour detected burns).  
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 Results and validation 

 
Three years of MERIS data (2006 to 2008) were processed with the described algorithm. Global BA 

obtained for years 2006, 2007 and 2008 was 3650268, 3772086 and 362327 km2 respectively. Figure 

3 shows the BA obtained for year 2008.  

 

Figure 3. Global BA from MERIS in 2008  

A complete global and temporal validation strategy has been developed within the Fire-CCI project. 

In this framework, a validation of the MERIS BA product performed with a LANDSAT validation 

dataset was performed. Results can be found in Padilla et al, 2014 (in preparation). The validation 

presented here is based on the use of perimeters obtained from different agencies and aims at validating 

the product in larger areas. The validation was performed for the 3 years where MERIS BA product is 

currently available (2006 to 2008). 

 

Four areas were chosen: 

 Canada: perimeters were downloaded from the Canadian Wildland Fire information System 

(cwfis.cfs.nrcan.gc.ca/ha/nfdb/). The Canadian National Fire Databse (CNFDB) is a collection 

of forest fire data from various sources, provided by Canadian fire management agencies 

(provinces, territories, and Parks Canada). The area designed to perform the validation is the 

Canadian study site (Figure 1). MERIS BA product and perimeters from the fire information 

system were reprojected to UTM.  

 Australia: the Australian perimeters were downloaded from the North Australian Fire 

Information database (www.firenorth.org.au/nafi2/). Also the study site area was chosen to 

perform the validation (Figure 1). Both MERIS and perimeter databases were projected to 

UTM. Fire scars are sourced from the Darwin Centre for bushfires research at Charles Darwin 

University (for NT and northern WA fire scars) and Cape York Peninsula sustainable futures 

(for Queensland). They are obtained from 250 m MODIS imagery. Two images are used to 

map the affected areas, by using segmentation and visual interpretation 

(http://www.firenorth.org.au/nafi2/about/faq.pdf). 

http://www.firenorth.org.au/nafi2/
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 The Californian perimeters were downloaded from the Fire and Resource Assessment program 

(FRAP) webpage (frap.fire.ca.gov). Fire perimeters information is obtained by several 

agencies. The validation site chosen covers an area of 572000km2 (Figure 1). MERIS data 

were reprojected to the perimeters database projection (alberts_conic_equal_area).  

 Iberian Peninsula Perimeters were obtained from the European Forest Fire Information System 

(EFFIS). EFFIS makes use of satellite imagery acquired with MODIS. The area was selected 

to include the Iberian Peninsula, as shown in Figure 1. MERIS data were reprojected to the 

perimeters projection, standard European spatial reference system ETRS-LAEA, ETRS89, 

Lambert azimuthal equal area. 

 

Validation results are shown in Table 1 for the 4 areas under study. Through the years same tendencies 

and range of commission and omission errors are identified. Overall there is a tendency towards 

omission for the 3 years. Australia shows higher omission errors. The Californian validation site shows 

a higher balance between omission and commission except for year 2008. The Canadian area has 

higher omission values, where as in the Iberian Peninsula the MERIS BA algorithm tends to 

overestimate the BA leading to higher commission errors.  

 

Table 1. Validation for 4 areas, years 2006 to 2008.  

 2006 2007 2008 

 CE OE OA CE OE OA CE OE OA 

Australia 0.0854 0.4251 0.7887 0.1105 0.4291 0.8075 0.1416 0.4488 0.8498 

California 0.3256 0.3409 0.9971 0.3538 0.3333 0.9955 0.1706 0.4568 0.9953 

Canada 0.3062 0.4669 0.9809 0.0322 0.5597 0.9924 0.1412 0.7126 0.9807 

SP & PT 0.4400 0.2363 0.9984 0.6545 0.3954 0.9994 0.8300 0.6327 0.9997 

 

Figure 4 shows cumulative distribution curves that relate the number of fires detected per fire size for 

both the validation dataset (dotted line) and the MERIS one (black line) for year 2008. In the case of 

the validation datasets, perimeters are already identified by a number that differs for each perimeter. 

In the case of MERIS, perimeters were obtained by assuming that the pixels burned are part of the 

same perimeter when the dates between neighbour pixels do not differ in more than 15 days. In the 

Australian site, both NAFI and MERIS show the same tendency. Omission errors found in the 

validation exercise are shown by the fact that the MERIS line follows under the NAFI one for all fire 

sizes. For the other 3 validation sites the number of fires detected by MERIS is higher for small fire 

sizes where as it becomes lower for bigger size patches. This trend is especially clear for the Canadian 

site. Similar results and behaviour were obtained for years 2007 and 2006. 
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Figure 4. Fire size classification for 2008  

We separated the BA by ecosystem, following the classification defined in (Giglio, Loboda et al. 

2009). Results are shown in Table 2. The areas with higher fire activity are AUS, BOAS, CEAS, 

NHAF, SHAF, SHSA showing similar tendencies for the 3 years. When comparing the product 

globally to the MDC 64 (Table 2) results show that MERIS estimates more BA than MCD64 for the 3 

years where the comparison has been performed, having the largest difference in 2008. Results are 

consistent in the order of magnitude for all regions. For 9 regions (CEAM, CEAS, EURO, NHAF, 

NHSA, SEAS, SHAF, SHSA, TENA) MERIS estimates are higher or in the same order as the GFED 

ones. In these cases, the trend is consistent between years, i.e. if a BA value increases from one year 

to the next in the MERIS case, the same behaviour occurs in the GFED. In another 3 regions (AUS, 

BONA and MIDE) BA MERIS estimates are lower or in the same order than GFED. There are only 2 

regions where results are less consistent between the two products (BOAS and EQAS). In BOAS, 2006 

has an order of magnitude higher in MERIS estimates, where as 2007 is higher than GFED but in the 

same range and 2006 is lower than GFED but in the same order. In EQAS 2006 has lower estimates 

than GFED, where as 2007 and 2008 have higher values.  
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Table 2. MERIS and GFED values for years 2006 to 2008 separated by ecoregion.  

 2008  2007  2006  

ECO REGION GFED MERIS GFED MERIS GFED MERIS 

AUST 266319 223018 487099 374883 530913 339800 

BOAS 120490 106510 32399 43208 43288 113926 

BONA 14465 6350 15458 9656 19117 13133 

CEAM 11648 16153 10611 16085 12571 17256 

CEAS 139938 171311 124669 151462 175395 172419 

EQAS 4239 6068 4776 6370 26826 15085 

EURO 5367 12624 9655 14450 4771 9891 

MIDE 6036 6945 11770 8481 9015 8637 

NHAF 1176668 1275054 1234422 1236476 1151535 1227041 

NHSA 17754 24726 25153 27424 14925 15591 

SEAS 69744 99912 98740 113824 59303 87737 

SHAF 1315416 1473301 1242137 1396252 1221849 1395718 

SHSA 133827 188187 338357 338256 124969 204359 

TENA 14524 13118 26641 35257 24214 29676 

GLOBAL 3296434 3623277 3661888 3772086 3418690 3650268 

 

 Discussion and conclusion 

 

MERIS BA estimates are higher than the ones obtained by other collections such as GFED for the 3 

years that have been processed, but remain in the same range. In 2 of these areas (AUS, BONA) 

validation was performed and results showed a tendency towards omission for the 3 years tested. More 

detailed identification of omission and commission errors will be available soon in Padilla et al, 2014. 

but from this preliminary study there seems to be an underestimation of BA in certain regions. There 

are 2 possible reasons for this:  

- Omission inherent to the HS: as shown in (Hantson, Padilla et al. 2013), commission errors in the 

MOD14 product tend to be small, but omission errors can be significant, especially for some areas 

(South Africa, Colombia, Australia).  

- Conditions too restrictive in both seed and growing phases. In the seed phase the algorithm does not 

consider all HS as seeds, pixels that do not satisfy the conditions detailed in the previous sections will 

not be classified as seeds. Filtering out some of the HS should not be a significant problem for large 

fires, since pixels around the detected PAFs will also be studied. Nevertheless, excessive filtering can 

become relevant for smaller fires, or in areas where there are less HS, as all HS could be filtered out 

in the seed phase, leading to non detection of the fire. In the growing phase conditions could be too 

restrictive particularly for some regions. In this case, larger fires will be considered smaller, and if 

there are several seeds for the fire this will probably lead to fragmentation of fires. This will lead to an 

over estimation of smaller number of perimeters in cases where the same fire is fragmented. This could 

explain the results shown in Figure 4, where smaller fires were more abundant that in the database due 

to the fact that the fire might be fragmented, and it was considered as more than one perimeter. 

Although when designing the algorithm the aim was to make it tailored for each region, the growing 

conditions might not be optimal for all types of land cover and ecosystems. 

 

An algorithm to estimate burned areas on a global scale for the MERIS sensor has been presented. It 

is an hybrid algorithm that makes use of thermal and spectral information to detect fire scars. It is 

based on a two steps process: seed and growing phases. Results have been obtained for 3 years of data, 

and show consistency with other BA collections such as GFED. According to preliminary validation 
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results, there is a tendency towards omission. Future versions of the algorithm will consider these 

findings to refine the BA estimates.  
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