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Abstract 
Here we present a procedure that allows the operational generation of daily maps of fire danger over 

Mediterranean Europe. These are based on an integrated use of vegetation cover maps, weather data, and fire 

activity as detected by remote sensing from space. It is demonstrated that statistical models based on two-

parameter Generalized Pareto (GP) distributions adequately fit the observed samples of fire duration and that 

these models are significantly improved when the Fire Weather Index (FWI), that rates fire danger, is integrated 

as a covariate of scale parameters of GP distributions. Probabilities of fire duration exceeding specified 

thresholds are then used to calibrate FWI leading to the definition of five classes of fire danger. Fire duration is 

estimated on the basis of 15-minute data provided by Meteosat Second Generation (MSG) satellites and 

corresponds to the total number of hours fire activity is detected in a single MSG pixel during one day. Defined 

classes of fire danger provide useful information for wildfire management and are on the basis of the Fire Risk 

Mapping (FRM) product that is being disseminated on a daily basis by the EUMETSAT Satellite Application 

Facility on Land Surface Analysis (LSA SAF). 
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 Introduction 

 

Representing more than 85% of burned area in Europe, the Mediterranean is one of the regions of the 

world most affected by large wildfires that burn half a million of ha of vegetation cover every year 

causing extensive economic losses and ecological damage (San-Miguel-Ayanz et al. 2013). 

Fire in the Mediterranean is a natural phenomenon linking climate, humans and vegetation (Lavorel et 

al. 2007). Fire activity is therefore conditioned by natural and anthropogenic factors. Natural factors 

include topography, vegetation cover and prevailing weather conditions (San-Miguel-Ayanz et al. 

2003) which are linked to several atmospheric mechanisms working at different temporal and spatial 

scales (Trigo et al. 2006). At the regional and at the seasonal or inter-annual time scales, rainy and 

mild winters, followed by warm and dry summers, lead to high levels of vegetation stress that make 

the region particularly prone to the occurrence of fire events (Pereira et al. 2005). At the local and 

daily scales, extreme weather conditions (e.g. temperature, wind speed, atmospheric stability, fuel 

moisture and relative humidity) play in turn a key role in the setting and spreading of wildfires 

(Amraoui et al. 2013). 

Since 1990 the European Commission has been implementing actions aiming at the organization of a 

Community forest-fire information system and at the development and implementation of advanced 

methods for the evaluation of forest fire danger and the estimation of burnt areas at the European scale 

(San-Miguel-Ayanz et al. 2012). 
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Forecasts of fire danger over Mediterranean Europe up to three days in advance are also currently 

being disseminated within the framework of the Satellite Application Facility on Land Surface 

Analysis (LSA SAF, Trigo et al. 2011) which is part of the distributed Applications Ground Segment 

of EUMETSAT (the European Organization for the Exploitation of Meteorological Satellites).  

The goal of the present study is to quantify and predict the randomness in the distribution of duration 

of fire events using statistical modelling, and therefore provide a robust estimation of fire danger 

instead of a simple characterization using basic FWI statistics.  

 

 Background 

 

Fire prevention requires adequate knowledge about time when and location where a fire event is likely 

to happen as well as on the potential damage that may result on wildland and urban values (Finney 

2005). These two aspects, respectively referred to as fire danger and vulnerability, constitute the two 

main components of fire risk assessment (Chuvieco et al. 2010). The first component deals with fire 

behaviour probabilities and wildfire potential assessment that encompasses potential fire ignition, 

propagation and difficulty of control. The vulnerability component includes the assessment of the 

negative effects which mainly relate to socio-economic values, degradation potential of soil and 

vegetation conditions and landscape value. 

The focus of the present study is on wildfire potential assessment that is usually based on fire danger 

rating systems (Fujioka et al. 2009), which provide indices to be used on an operational basis for fire 

prevention management. Because of the availability of near-real time weather observations and 

forecasts, most of danger rating systems make use of indices that are based on meteorological 

parameters (Bovio and Camia 1997). 

Here, fire danger is rated based on the Fire Weather Index that is part of the Canadian Forest Fire 

Weather Index System (CFFWIS, Van Wagner 1974). CFFWIS has shown to be particularly suitable 

as a fire rating system for Mediterranean Europe. Dimitrakopoulos et al. (2011) have shown that 

CFFWIS components, in particular FWI, are suitable to rate fire danger in the eastern Mediterranean. 

Since 2007, FWI is the main component of the EFFIS Danger Forecast module (San-Miguel-Ayanz et 

al. 2012). 

When applied to ecosystems other than Canadian forests, CFFWIS must be calibrated to the new 

environmental conditions by means of a reliable database of fire events (Carvalho et al. 2008). The 

process of calibration usually involves establishing a set of break points that result from the analyses 

of fire weather history and time series of the CCFFWIS components, namely FWI (van Wagner 1987). 

Established break points are then used to define fire danger classes (Kiil et al. 1977). In the present 

study, breakpoints of FWI are based on estimates of fire danger provided by statistical models of fire 

activity based on the FD&M product from the LSA SAF. The proposed approach has the advantage 

of rating fire danger based on statistical models of extreme fire events, which allow quantifying the 

contribution of meteorological factors in terms of increasing or decreasing the probability that the 

duration of a fire event exceeds a given threshold. 

 

 Data and methods 

 

 Study area and period 

Encompassing Mediterranean Europe, the study area (Figure 1) is delimited by the latitude circles of 

35º and 45ºN and the meridians of 10ºW and 37ºE. In order to be consistent with related LSA SAF 

products, all data fields are mapped in the so-called Normalized Geostationary Projection (NGP) of 

MSG (EUMETSAT 1999). The MSG pixel resolution is 3 km at the nominal sub-satellite point (0º lat, 

0º lon), progressively deteriorating with increasing distance, reaching values of about 5 km over 

Mediterranean Europe. 
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Baseline information about land cover is obtained from the 1 km resolution Global Land Cover 2000 

(GLC2000) dataset as derived from SPOT-4 VEGETATION (Bartholomé and Belward 2005). 

GLC2000 data comprise 22 land-use types which were grouped into three main classes of vegetation 

cover (Figure 1): forests (GLC2000 classes 1, 2, 4 and 6); shrubs (classes 11, 12 and 14); and cultivated 

areas (class 16). The three main classes were mapped from the original 1 km resolution to the NGP of 

MSG by assigning to each (~5 km) MSG pixel the most frequent class falling inside that pixel. 

 

Figure 1. Geographical distribution of the three main vegetation types as derived from GLC2000.  

 

The study covers the months of July and August of 2007, 2008 and 2009. This period may be regarded 

as representative of fire activity in Mediterranean Europe taking into account the official statistics of 

burned area provided by the European Commission for Portugal, Spain, France, Italy and Greece. 

 

 Meteorological data 

Daily values of FWI over the study area are derived from meteorological fields provided by ECMWF 

operational model for 12 UTC, covering the period of July and August, from 2007 to 2009. Originally 

obtained over a 0.25°×0.25° latitude/longitude grid, the meteorological fields were re-projected onto 

NGP. Data consist of 2-meter air temperature, 2-meter dew point temperature, 10-meter wind speed 

and 24-hour cumulated precipitation; temperature and dew point were topographically corrected by 

applying a constant lapse rate of -0.67ºC/100m to the difference between ECMWF (coarser) orography 

and NGP pixel altitude. Relative humidity of air was computed by combining dew point temperature 

and temperature according to Magnus’ expression (Lawrence 2005). For each pixel and day, anomalies 

of FWI, hereafter referred to as FWI*, were computed as departures from the 30-year means for the 

reference period 1980-2009, i.e., the anomaly 𝐹𝑊𝐼𝑝𝑑
∗  for MSG pixel p and day d is defined as: 

𝐹𝑊𝐼𝑝𝑑
∗ = 𝐹𝑊𝐼𝑝𝑑 − 𝐹𝑊𝐼𝑝 (1) 

where 𝐹𝑊𝐼𝑝𝑑 is the value of FWI for pixel p and day d and 𝐹𝑊𝐼𝑝 is the time mean performed for that 

pixel and day over the 30-year reference period. 

 

 Fire activity and duration 

Information on fire activity every 15 min on an MSG pixel basis is available from the above-mentioned 

FD&M product that is currently generated within the framework of the LSA-SAF (Trigo et al. 2011).  

Duration of fire δ may be estimated by summing the number detected fires in a given pixel p and a 

given day d during the study period. For each pixel p, at day d, there are 96 observations (one every 

15 min) made by the SEVIRI instrument on-board MSG. Let Ipd(i) be an indicator function that is 

equal to one if the ith MSG image has captured fire activity inside pixel p during day d and is equal to 

zero otherwise. The fire duration δpd, for pixel p during day d, is defined as: 

𝛿𝑝𝑑 = 0.25 ×∑𝐈𝑝𝑑(𝑖)

96

𝑖=1

 (2) 
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Units of δ are hours, the coefficient 0.25 converting into hours the sampling interval of 15 min between 

consecutive MSG images. Fire duration δ may be viewed as a proxy of fire intensity and burn extent 

but it should be noted that δ is not to be interpreted as the duration of individual fire events.  

 

 Statistical models of fire duration 

The statistical distribution of fire duration δ is modelled using the Peaks Over Threshold (POT) 

approach (Pickands 1975), which is a commonly used tool to quantify fire danger (de Zea Bermudez 

et al. 2009). The POT approach uses the Generalized Pareto (GP) distribution as a model to assign 

probabilities to the exceedances of duration δ over a threshold, i.e. to values x=δ-δmin (with δ>δmin) 

where δmin is a prescribed minimum value (de Zea Bermudez and Kotz 2010b).  

The GP probability density function g is given by: 


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where x is the exceedance, and α and σ are the shape and scale parameters. The corresponding GP 

cumulative distribution function is: 
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(4) 

When α<0 the distribution is upper bounded, with 0 < x < –σ/α. A complete description of the GP 

distribution may be found in de Zea Bermudez and Kotz (2010a). 

The minimum threshold δmin is estimated using a graphical approach (Coles 2001) where the chosen 

value is such that the sample mean of the values exceeding successive thresholds larger than δmin 

becomes a linear function when plotted against the respective thresholds.  

Once δmin is determined, the shape (α) and the scale (σ) parameters are estimated using the maximum 

likelihood method (Grimshaw 1993); 95% confidence intervals for α and σ are asymptotically 

estimated using normal distributions for α and for log(σ) (Kotz and Nadarajah 2000). Goodness of fit 

is assessed by means of the A2 test (Anderson and Darling 1952), a nonparametric test that is especially 

appropriate to models based on long-tailed distributions.  

For each vegetation type, POT is applied to the exceedances x of all fire pixels that were recorded 

during the study period (July-August 2007-2009). Obtained models, hereafter referred to as static 

models, may be improved by incorporating daily anomalies, FWI*, as a covariate of scale parameter 

in the GP distributions, in particular by assuming a linear dependence of σ on FWI*: 
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(5) 

Estimates of shape parameter (α) and of coefficients of the linear relationship σ=a×FWI*+b are again 

obtained using the maximum likelihood method. Performance of the new alternative models, hereafter 

referred to as daily models, is compared against the respective null models (i.e. the original static 

models) by using the so-called standard likelihood ratio test (Neyman and Pearson 1933). The test is 

based on statistic Λ defined as: 

)ln'(ln2 LL   (6) 

where L is the maximum likelihood function of the static model and L' is the maximum likelihood 

function of the daily model. 

 

 Meteorological danger 

Static models allow estimating baseline danger Db0 which represents the probability that exceedance 

x is above a given fixed threshold x0: 
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(7) 

Conversely, the threshold value of exceedance x0, corresponding to a specified level of baseline danger, 

Db0, may be estimated, for each vegetation cover, by inverting the previous relationship: 
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(8) 

In a similar way, daily models allow estimating daily danger Dd which represents the probability that 

exceedance x is above a given fixed threshold x0 for a given value of FWI*: 
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(9) 

The role played by meteorological conditions on wildfire potential may then be uncovered by defining 

meteorological danger Dm, which combines information about static and daily danger for a given day 

and pixel according to the following procedure: 

1. A given threshold of baseline danger, Db0, is fixed over the entire study area; 

2. For each vegetation cover, baseline thresholds of exceedances x0 are computed using the 

appropriate static models of fire duration (Eq. 8); 

3. For each day and pixel location, daily models are then used to estimate daily danger, Dd, based 

on the corresponding baseline threshold and the observed daily value of FWI* (Eq. 9); 

4. Meteorological danger, Dm, is finally defined by the ratio of daily danger Dd to prescribed 

baseline danger Db0: 

0

0
0

*),(
*),(

b

d
m

D

FWIxD
FWIxD 

 
(10) 

Meteorological danger provides a coherent basis to set break points in FWI* to be used in the definition 

of classes of meteorological fire danger. Given a baseline danger Db, break point BPL will be defined 

as the value of FWI* associated to meteorological danger L, i.e. 
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(11) 

Values of BPL may be estimated by inverting the previous equation e.g. using the bisection method 

(Faires and Burden 1985). 

 

 Results 

 

 General characteristics of fire duration 

Duration of fire activity for the three vegetation types (Table 1) is characterized by long tailed 

distributions, with values of δ <3 h representing about 85, 82 and 94% of the sample in the case of 

forest, shrub and cultivated areas, respectively . Besides being less frequent in both absolute and 

relative terms, duration of fire activity in cultivated areas has a shorter tail than duration in forest or 

shrub. For instance the relative frequencies of very long lasting fire activity (δ>12 h) over forest and 

shrub are 0.52 and 0.89% respectively, about three times and more than five times the value of 0.17% 

corresponding to cultivated areas. Long-lasting fire episodes are therefore more expected through 

shrub land and forests than over agricultural areas, a result in close agreement with findings in previous 

works either at the scale of the Mediterranean basin (Fernandes, 2013) or at the national levels of 

Portugal (Barros and Pereira 2014), Spain (Moreno et al. 2011) and Italy (Bajocco and Ricotta 2008). 

Such differences in land cover burning are likely to be driven by different interacting factors which 

include fuel connectivity, topography, population density, meteorological conditions and fire 

suppression (Brotons et al. 2013). For instance, the proximity of agricultural lands to populated areas 

and the social and economic value attributed to agricultural activities is expected to steer an increase 
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of the level of effort in fire suppression and therefore to a decrease in the likelihood of large fire events 

(Moreira et al. 2010). 

Table 1. Distribution frequencies of fire activity for the three types of vegetation. The distributions of fire activity refer 

to the study period of July-August 2007-2009; for each class the absolute frequency is shown together with the 

relative frequency (% in brackets). 

Classes of 

duration δ (h) 

0.25 

to 

3.00 

3.25 

to 

6.00 

6.25 

to 

9.00 

9.25 

to 

12.00 

12.25 

to 

15.00 

15.25 

to 

18.00 

18.25 

to 

21.00 

 

Total 

Forest 3 321 387 128 34 15 4 1 3 890 

[%] [85.37] [9.95] [3.29] [0.87] [0.39] [0.10] [0.03] [100.00] 

Shrub 2 240 292 114 47 17 7 0 2 717 

[%] [82.44] [10.75] [4.19] [1.73] [0.63] [0.26] [0.00] [100.00] 

Cultivated 2 205 118 23 4 3 1 0 2 354 

[%] [93.67] [5.01] [0.98] [0.17] [0.13] [0.04] [0.00] [100.00] 

 

 Static models 

Results from the previous exploratory analysis suggest choosing POT and use GP distributions to 

model the exceedances of duration δ for each vegetation type. For each vegetation type, a common 

minimum threshold of 3 h was therefore set for δmin. The largest scale (σ) parameter is the one for 

shrub, followed by forest and cultivated areas (Table 2). The shape (α) parameters are negative for all 

vegetation cover types, indicating that exceedances are upper limited. The largest negative value is 

also the one for shrub, followed by forest and cultivated areas. The predominant effect of the scale (σ) 

parameter on the fitted GP models becomes apparent when plotting the cdf curves for the three 

vegetation cover types (Figure 2), the shrub model presenting the longest tail, followed by forest and 

cultivated areas. 

 

 Daily models 

The role played by meteorological factors may be assessed by looking at the impact of FWI on fire 

activity. The dataset of exceedances x for each vegetation type was subdivided into subgroups 

associated with different ranges of FWI; 51 groups of fire pixels were defined as respectively 

associated with values of FWI between percentile 0 and percentile 50, between percentile 1 and 

percentile 51, and so on up to between percentile 51 and percentile 100. GP distributions were then 

adjusted to each subset and plots were made of estimated values of scale σ versus the mean value of 

FWI in the considered range. 

For all types of vegetation cover, the scale (σ) parameter tends to linearly increase with increasing 

FWI. Each type presents a characteristic range of FWI, the largest values being observed for shrub and 

the lowest for forest. There is a close relationship between vegetation cover and range of FWI. 

However the spatial distribution of FWI is affected by other factors than vegetation. For instance, the 

Eastern and Southern borders of the Mediterranean basin present higher values of FWI. The impact of 

regional effects other than vegetation may be mitigated by replacing daily values of FWI at a given 

pixel by respective departures (FWI*) from 30-year means for the reference period 1980-2009. 
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Table 2. Static GP models for each vegetation type. Columns 1-5 indicate the following: vegetation type, sample size 

and corresponding percentile of original data sample (% in brackets), estimated values and 95% confidence intervals 

(in brackets) of the shape (α) and scale (σ) parameters, and confidence levels (CL) of the Anderson-Darling tests. 

Vegetation 

type 

Sample size 

[Percentile] 
α Σ CL 

Forest 
569 

[85%] 

-0.06 

[-0.13,0.02] 

2.92 

[2.61,3.26] 
98% 

Shrub 
477 

[82%] 

-0.14 

[-0.22,-0.05] 

3.70 

[3.27,4.18] 
93% 

Cultivated 
149 

[94%] 

-0.01 

[-0.15, 0.12] 

2.31 

[1.87,2.86] 
91% 

 

 

 

Figure 2. Probability density functions (left panel) and cumulative distribution functions (right panel) of fitted GP 

models of exceedances x=δ-δmin (with δmin = 3 h) for forests (solid curve), shrubs (dashed curve) and cultivated 

areas (dotted curve). 

Impact of meteorological conditions was therefore modelled by introducing FWI* as a covariate of the 

scale parameter of the GP models using linear relationships of the type σ=a+b×FWI* (Table 3). In all 

cases p-values of the maximum likelihood ratio test are lower than 0.5% meaning that the null 

hypothesis that the daily models have a better fit than the corresponding static ones cannot be rejected 

at the 0.5% significance level. The sensitivity of scale parameters to changes in FWI* also reflect on 

the probabilities of exceedance of duration (Figure 3). 

Table 3. Daily GP models for each vegetation type. Columns 2-4 indicate the following: shape (α) parameter, 

dependence of scale (σ) parameter on FWI* and p-values of the maximum likelihood ratio tests. 

Vegetation 

type 
α σ=a+b×FWI* p-value (%) 

Forest -0.074 σ=2.04 + 0.038×FWI* 1.39x10-5 

Shrub -0.15 σ=2.37 + 0.052×FWI* 1.20x10-6 

Cultivated -0.027 σ=1.33 + 0.042×FWI* 0.46 
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 Calibration of FWI 

For each vegetation type the respective static and daily models were used to compute the dependence 

of meteorological danger Dm on FWI* (Eq. 10). For a fixed baseline danger Db = 33%, four break 

points of FWI* were obtained, respectively associated to levels of meteorological danger of 0.25, 0.50, 

0.75 and 1.00. Estimates of break points (Table 4) were obtained by solving Eq. (11) using the bisection 

method. The three vegetation types present differences that are worth being noted. The largest value 

of the baseline threshold of fire duration (associated to baseline danger Db=33%) is the one of shrub 

(x0=3.8 h) followed at similar intervals of about 0.6-0.7 h by forest (x0=3.1 h) and cultivated areas 

(x0=2.5 h). The four defined break points allow defining five classes of meteorological fire danger, 

respectively “low” when Dm < 0.25, , “moderate” when 0.25 ≤ Dm < 0.5, “high” when 0.5 ≤ Dm < 0.75, 

“very high” when 0.75 ≤ Dm < 1 and “extremely high” when Dm ≥ 1. 

Table 4. Break points of FWI* for each vegetation type. Lines 2-6 indicate the following: baseline threshold of fire 

duration (x0) associated to a fixed baseline danger (Db=33%) and break points of FWI* (BP0.25, BP0.50, BP0.75 and 

BP1.00) corresponding to different levels (L) of meteorological danger Dm (0.25, 0.50, 0.75 and 1.00, respectively). 

 Forest Shrub Cultivated 

x0 3.1 h 3.8 h 2.5 h 

BP0.25 -17.5 -10.4 -6.5 

BP0.50 -4.7 0.8 -2.9 

BP0.75 8.7 12.6 12.8 

BP1.00 24.0 26.2 24.1 

 

 

Figure 3. Cdf curves for three fixed values of FWI* (-25, 0 and +25) in the case of the daily GP model for forests (top 

left panel), shrubs (top right panel) and cultivated areas (bottom panel). 

 

 Discussion 

 

The case of August 25th 2007, when Greece and Albania were struck by very severe fire events, 

provides an interesting example of the obtained product that is worth analysing in detail. Two 

impressive clusters of fire pixels with duration longer than 6 hours may be observed over Greece 
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(Figure 4, bottom panel). The larger cluster spreads over western Peloponnese and contains a large 

number of fires that lasted more than 12 hours, and the other one locates over eastern Attica and Evia. 

The map of classes of fire danger (Figure 4, top panel) shows that both clusters are part of a large core 

labelled “extremely high” which covers the entire territory of Greece and extends eastwards into 

Anatolia and towards the northeast over Bulgaria and Romania up to Crimea. An event lasting more 

than 12 hours also occurred in Albania, inside a large patch labelled “very high” which covers the 

territories of Albania, Montenegro and Bosnia and Herzegovina, and extends towards the northeast up 

to Ukraine. No fire events occurred in regions labelled “low”, and “moderate”.  

 

 

Figure 4. Map of classes of fire danger (top panel) and corresponding spatial distribution of observed fire events and 

respective duration (bottom panel) for August 25th 2007. Colorbars identify classes of fire danger (upper panel) and 

fire duration (lower panel). 

An assessment of the global consistency (in space and time) of results obtained was performed by 

analysing, for the entire study area and the entire study period, the number of observed events that 

belong to a given interval of fire duration and were assigned to a given class of fire danger (Table 5). 

The percentage of fires within any given duration interval (bold italics) steadily decreases with 

decreasing danger, with the exception of fires of very short duration (less than 1h) where the “high” 

class is the modal one. Such decrease is especially steep in the cases of the upper intervals of duration. 

With the exception of fires of very short duration where the fraction is only 1%, there is no fire activity 

in the case of “low” danger. When considering fixed classes of danger, it may be noted that the 

percentage of events associated with any given duration interval (underlined italics) always decreases 

with increasing duration, the steepest declines being observed in the lower danger classes. 

When looking at maps of classes of fire danger (Figure 4) it may be noted that areas of “high” and 

“very high” fire danger spread over regions where no fire activity is detected. This is to be expected 

since both static and daily models allow computing probabilities of exceedance provided there is an 

event with minimum duration of 3 h.  

 

 

 

 



 Chapter 4 - Fire Risk Assessment and Climate Change 

 

 Advances in Forest Fire Research – Page 1111 

 

 Conclusions 

 

The calibration approach adopted in this study is based on an integrated use of information about 

meteorological conditions provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), vegetation land cover from Global Land Cover 2000 (GLC2000) and fire duration as 

detected by the SEVIRI instrument on-board Meteosat Second Generation (MSG) satellites. The main 

difference of the proposed methodology to existent others is that it takes full advantage of the temporal 

resolution of SEVIRI that allows detecting fire events every 15 minutes. This information is used to 

make daily records of fire duration that are essential to calibrate meteorological danger and establish 

classes of fire danger. Traditional approaches rely on calibration procedures performed through 

analyses of fire weather history based on ground observations of amount of burned area or number of 

fire occurrences. Several factors may affect the reliability of ground observations; recorded values are 

not only determined by visual inspection which may nevertheless affect their accuracy but they are 

also determined by the policy of individual countries, which may further change in time (Pereira et al. 

2011). Approaches based on the use of satellite data have the advantage of being more consistent in 

space and time. They also benefit from not depending on the availability of ground fire records from 

each country, which are neither easily obtainable, nor available in the short term. 

Finally, it is worth stressing that the Fire Risk Mapping (FRM) product is entirely based on a set of 

estimated probabilities, in particular meteorological danger. These probabilities are derived from 

statistical models that may be readily updated and continuously tuned, which represents an advantage 

from the operational point of view. The fact that the FRM product is currently being disseminated 

within the framework of the Land Surface Analysis Satellite Application Facility (LSA SAF) will also 

allow tailoring the product according to specific needs of a broad community of users. 

 

Table 5. Distribution of fire events by classes of fire danger and by fire duration. Each cell contains the number of 

observed daily fire events (first line), the corresponding fraction (%) of the total number of events with the same fire 

duration interval (second line, bold italics) and the corresponding fraction (%) of the total number of events in the 

same class of fire danger (second line, underlined italics). 

 Classes of fire danger  

Duration (hours) Low Moderate High Very high 
Extremely 

high 

All 

Classes 

0 – 1 

 

68 634 2111 1853 1327 5983 

1 99 11 89 35 75 31 66 22 53 100  

1 – 2 

 

1 46 361 379 382 1169 

0 1 4 6 31 13 32 13 33 15 100  

2 – 3 

 

0 14 132 215 225 586 

0 0 3 2 22 5 37 8 38 9 100  

3 – 6 

 

0 12 180 267 338 797 

0 0 2 2 23 6 33 9 42 14 100  

6 – 9 

 

0 7 29 77 150 263 

0 0 3 1 11 1 29 3 57 6 100  

9 –12 

 

0 0 6 28 51 85 

0 0 0 0 7 0 33 1 60 2 100  

12 – 15 

 

0 0 2 8 25 35 

0 0 0 0 6 0 23 0 71 1 100  

15 – 18 

 

0 0 1 3 8 12 

0 0 0 0 8 0 25 0 67 0 100  

> 18 

 

0 0 0 0 1 1 

0 0 0 0 0 0 0 0 100 0 100  

All 

 durations 

69 703 2822 2830 2507 8931 

 100  100  100  100  100 100  
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