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Abstract 
Wildfires are great threat to nature and humans. Predicting fire occurrence, early fire detection and intervention 

can significantly diminish hazardous consequences. Therefore, fire risk index is used to quantify probability of 

fire occurrence at certain time and place, in order to help fire managers to organize fire protection in a better 

way. In this paper we have performed statistical analysis of past fires detected by satellites in respect to various 

parameters. We have taken into account meteorological, topological and anthropological parameters and study 

their influence on fire occurrence. Based on this study we proposed an improved method for calculating a site-

specific fire risk index (SWRI), especially tuned for the Adriatic region.  
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 Introduction 

  

Wildfires are important class of natural hazards especially in areas with mild and hot climate such as 

Mediterranean region. Fire management deals with predicting, preventing and detecting wildfires, as 

well as fire suppression after it ignites. For all these activities, fire risk index can be useful indicator. 

Fire risk index represents a numerical description probability of fire ignition and spread on a certain 

place and time. Wildfire risk index determination is of great importance for both wildfire prevention 

and protection. Even before the actual wildfire, identifying the fire danger is of great importance as it 

can be useful for planning firefighting activities. By using wildfire risk index, it is possible to achieve 

a more successful surveillance of the surrounding terrain by raising the level of alertness of automatic 

fire detection system or human observers on areas where current risk index is high. Beside that, 

wildfire risk index could help improve fire alertness for all the citizens who may be affected by 

wildfires. 

Most countries exposed to wildfires have either developed or use one of the existing methods for 

wildfire risk index calculation. However, most of these indexes are not adequate for the use in the 

Adriatic region. Even more, not many existing wildfire risk indexes were site-specific developed with 

a focus on a micro-location, and therefore they have a rather low spatial resolution.  

In this paper we propose a calculation method for Site-specific Wildfire Risk Index (SWRI) with 

quite satisfactory spatial resolution. The proposed wildfire risk index is not based solely on the 

meteorological parameters, like most existing wildfire risk indexes. It also takes into account other 

parameters for which we have, after carrying out a detailed statistical analysis, proven that they have 

a significant influence on the risk of wildfires in the Adriatic region, particularly on the central part of 

the Adriatic. More specifically, the proposed wildfire risk index is based on the following parameters: 

climatological and meteorological parameters, vegetation, terrain configuration and anthropogenic 

parameters. An example of the developed site-specific wildfire risk index for Split and Dalmatia 

County in Croatia, during a relatively high-risk index is shown in Figure 1. 
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Figure 1. An example showing the proposed micro-location wildfire risk index  

Our paper is organized as follows: In Section 2 we give a short overview of the existing wildfire risk 

indexes. In Section 3 we describe all the data required for a statistical evaluation of the proposed 

wildfire risk index in the Adriatic region. In Section 4 we studied different parameters in detail and 

calculated the correlation with wildfire frequency in the past for the Adriatic region. In Section 5 we 

define what we mean by a site-specific wildfire risk index. Finally, in Section 6 we carried out the 

evaluation of the proposed index. 

 

 Related work 

 

In fire management, operatives usually use some kind of risk predication and assessment. Also, many 

counties adopted or developed a method for fire risk index calculation. Wildfire risk indexes are often 

classified into two categories: static and dynamic ((Gould, 2003, (Hernandez-Leal, 2008, (San-Miguel-

Ayanz, 2002). Static indicators of wildfires change slowly over time; therefore they can be computed 

once before each fire season. In contrast, dynamic indicators of wildfires depend upon current 

conditions and must be calculated at least on a daily basis. 

In the United States, National fire danger rating system (NFDRS, 1988) is used for ignition and spread 

risk assessment. Widely used fire risk index is Canadian Fire Weather Index (FWI), based on Canadian 

empirical fire model (FWI, 2009). FWI is calculated on the basis of weather conditions (temperature, 

humidity, wind, rain). Some authors also propose risks estimation based on Normalized Difference 

Vegetation Index (NDVI, 2014) obtained by remote sensing. In Europe, frequently used wildfire risk 

index is European Forest Fires Risk Forecasting System (EFFRFS) ((Gould, 2003, (San-Miguel-

Ayanz, 2002), where the probability of fire occurrence and likely damage belong to static indicators, 

and meteorological fire risk and vegetation stress fire risk belong to dynamic indicators.  

Geographic information system is used in wildfire risk models described in ((Erten, 2002, (Setiawan, 

2004). In ((Zhijun, 2009) elevation, meteorological conditions and vegetation belong to main 

parameters for wildfire risk index. Other solutions were also proposed like (Silveira, 2008, Preisler, 

2004, Vasilakos, 2007, (Netolicki, 2012, (Bugaric et al., 2009). 

We used a slightly different approach. First we performed a detail statistical analysis of input 

parameters important for wildfire risk index calculation for Split and Dalmatia County. Based on this 

analysis a number of parameters were selected and in this first version of our model a linear correlation 



 Chapter 4 - Fire Risk Assessment and Climate Change 

 

 Advances in Forest Fire Research – Page 1266 

 

of selected parameters was considered. Genetic algorithms were used for calculation of coefficients in 

the model. The final evaluation has confirmed the reasonable assumptions of our model. 

 

 Input data for the statistical analysis 

 

Meteorological data used for the impact assessment of different parameters on a site-specific wildfire 

risk index were collected for the time period from January 1st 2012. to January 1st 2014. Croatian 

Meteorological and Hydrological Service (DHMZ) calculates Canadian wildfire index (FWI) for 

several meteorological station across Adriatic coast several times a day. In collaboration with DHMZ, 

we have collected for Split-Dalmatia County their FWI as well as other meteorological data concerning 

wind, rain and humidity, with spatial resolution of 2km. 

Vegetation parameters were based on Corine Land Cover (CLC) categorization. Unfortunately, fuel 

maps that classify vegetation in relation to the characteristics of combustibility were not developed for 

the Adriatic region. We proposed a simple conversion table to convert from CLC classification to a 

well-known Fire Behaviour Prediction System (FBPS) models introduced by ((Burgan, 1998, 

(Anderson, 1982, (Scott & Burgan, 2005).  

Terrain configuration data was based on NASA SRTM (Shuttle Radar Topography Mission) ((van 

Zyl, 2001). These data are currently distributed free of charge, and provide digital elevation model 

with 3-arc seconds resolution (approximately 90m) for the Adriatic region.  

Anthropogenic parameters were extracted from OpenStreetMap ((OpenStreetMap, ) that is open data, 

licensed under the Open Data Commons Open Database License (ODbL). More specifically, we 

extracted information about roads, railroads, buildings and transmission lines.  

The evaluation of the proposed site-specific wildfire risk index was performed using history of 

wildfires database. This database is based on MODIS ((NASA, ) data from Terra and Aqua satellites, 

which are capable of detecting wildfires with minimal area 1km2. History of wildfires was collected 

for the period from January 1st 2001 to January 1st 2013 and consists of 1146 records of fire in Split-

Dalmatia County.  

A site-specific wildfire risk index (SWRI) was completely implemented using GRASS GIS ((NASA, 

2014) http://earthdata.nasa.gov/data/near-real-time-data/data/firms/active-fire-data, Active Fire 

Data | EOSDIS - Earth Data Website, 06. June 2014. 
(NDVI, 2014) http://earthobservatory.nasa.gov/Features/MeasuringVegetation/ 

(Neteler & Mitasova, 2008) software and for visualization Mapserver (Mapserver, 2014) as well as 

Open Source Web GIS technology based on Openlayers (Openlayers, 2014) were used. First the 

impact assessment of input parameters on the site-specific wildfire risk index in the Adriatic region is 

given. Please note that all the values were normalized into interval [0-255] where 0 represents low, 

and 255 high wildfire risk index. For most of the parameters we have calculated Pearson correlation 

coefficient (Pearson, 1805), later used in model definition. 

  

 Impact assessment of input parameters on wildfire risk index 

 

 Climatological and meteorological parameters 

While meteorological parameters refer to current weather parameters, climate refers to pattern of 

meteorological parameters over long periods of time. Climatological parameters can influence wildfire 

risk index in several ways. Climatological parameters determine the type of vegetation growing at 

certain territory. Drier climate usually means higher value of insolation and air temperature. Finally, 

strong winds can also have a great impact on the wildfire rate of spread, and thus on wildfire risk index. 

The proposed SWRI index is a dynamic index, where dynamics depends mostly on meteorological 

and climatological parameters. In our solution, wildfire risk index depends on: temperature, relative 

humidity, rainfall, wind speed, wind direction and cumulative FWI. 



 Chapter 4 - Fire Risk Assessment and Climate Change 

 

 Advances in Forest Fire Research – Page 1267 

 

 

Figure 2. Relation between normalized FWI index RFWI and fire frequency during year 2012. 

 

Figure 2 shows the relation between FWI index and 154 historical wildfires that occurred during the 

year 2012. As we can see from the figure, most of the wildfires occurred under a very high FWI index; 

however, this is due to the low spatial resolution of FWI index where most of the terrain during the 

summer season is labelled as a high-risk territory. Although we believe that there exists territory with 

lower level of wildfire risk, we decided to take FWI index as a parameter in the calculation of the 

proposed site-specific wildfire risk index. Let us denote parameter based on Canadian fire feather 

index as RFWI.  

Our study has shown that the slope of the terrain in combination with wind speed (Rst) as well as the 

aspect of the terrain in combination with wind direction (Rat) have greater influence on wildfire risk 

than wind speed and wind direction alone. We use the following equations to calculate those two sub-

indexes: 
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Figure 3. Relation between normalized indexes based on terrain and wind conditions (Rat,Rst) and fire frequency 

during year 2012. 

The graphs showing the normalized indexes are presented in Figure 3. Again, 154 historical 

wildfires that occurred during the year 2012 were taken into account.  
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 Vegetation parameters 

 

Fire spreads after ignition by igniting surrounding fuel in presence of oxygen. Amount of fuel depends 

on type of vegetation and soil. As already mentioned, FBPS fuel model was not developed for the 

Adriatic region, therefore in this paper we propose a conversion table used to convert from CLC classes 

to FBPS fuel model (Table 1). 

Categories from FBPS fuel model were also normalized into interval [0 255]. Relation between the 

fuel model sub-index (Rfm) and 1146 historical wildfires that occurred in Split-Dalmatia County from 

January 1st 2001 to January 1st 2013 is given in Figure 4 (left). 

Table 2. Conversion of CLC (Corine Land Cover) classes to FBPS fuel classes 

CLC 111 112 121 122 123 124 131 132 133 141 142 211 212 213 

FBPS 0 0 0 0 0 0 0 0 0 0 0 11 0 0 

CLC 221 222 223 231 241 242 243 311 312 313 321 322 323 324 

FBPS 2 10 7 1 12 12 12 9 8 8 1 0 5 2 

CLC 331 332 333 334 411 421 422 423 511 512  521 523   

FBPS 0 0 0 0 0 0 0 0 0 0 0 0   

 

 

Figure 4. Relation between normalized fuel model index Rfm and historical wildfires (left) and relation between 

normalized elevation index Rel and historical wildfires (right) 

 

 Terrain configuration 

Terrain configuration has two effects, first it has an influence on wildfire risk, but also it has an 

inevitable impact on the way the fire spreads after the ignition. In the previous sections we have already 

shown how terrain configuration in combination with wind speed and wind direction affects the 

wildfire risk index. In this section we investigate the influence of the terrain elevation. 

Higher altitude means lower temperatures, what has a direct impact on the risk of fire ignition. There 

is also an indirect impact on wildfire risk index through the type of vegetation growing at certain 

altitudes. Normalized elevation sub-index (Rel) was created by normalizing altitudes from 0m to 

1000m into interval [0 255] (whereas lower altitude represents higher index). The relation between 

normalized elevation index and 1146 historical fires is shown in Figure 4 (right). 

 

 Anthropogenic parameters 

In most cases of wildfires, humans are often responsible for fire ignition. Human activity is highly 

correlated with wildfires, no matter if fires were caused deliberately, or started by human negligence 

or ignorance. Fires caused by arson are often in a close proximity to humans and human infrastructure. 
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On the other hand, negligence, such as uncontrolled agricultural burning, can also be a significant 

cause of wildfires. These are just a few examples where the human is the main culprit for wildfire 

ignition.  

A first group of anthropogenic parameters refers to the distance from the human activities. In our study 

we investigated: the distance from roads and the distance from settlements. In order to determine the 

influence of the roads, we first formed a corridor close to the roads because we suppose that close to 

the roads the wildfire risk is higher. The width of the corridor was set to 2000 m, since in our study 

we observed that most of the historic wildfires occurred within this distance. Similarly, for the 

influence correlated with the distance from settlements, we formed a zone around the settlements of 

15 000 m (again, highest value of the normalized sub-index is in the close vicinity of the settlements). 

Graphs representing the relation of historical wildfires with normalized sub-indexes representing 

distance from roads (Rro) and buildings (Rbu) are given in Figure 5.  

 

 

Figure 5. Relation between normalized index based on distance from roads Rro and historical wildfires (left), relation 

between normalized index based on distance from settlements Rbu and historical wildfires (right) 

  

Figure 6. Relation between normalized index based on distance from railroads and historical wildfires (left), relation 

between normalized index based on distance from transmission lines Rtl and historical wildfires (right) 

The second group of anthropogenic parameters refers to the distance from human infrastructure, i.e., 

the distance from railroads and the distance from transmission lines. In the vicinity of the railroads 

wildfires often start from sparks caused by braking of the trains. However, our study has shown low 

correlation between historical wildfires and distance from railroads, therefore we decided to omit this 

sub-index from the final model (Fig 6 (left)). When we studied influence of transmission lines on 
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wildfire risk index, we formed a corridor with width 2000 m. Normalized index that takes into account 

the distance from transmission lines (Rtl) is shown in Figure 6 (right). 

For all the parameters we have calculated Pearson correlation coefficients, as shown in Table 2. 

Pearson correlation coefficient is a measure of the linear correlation (dependence) between two 

variables, in this case between a certain sub-index and fire frequency. Maximal correlation is 1. 

Table 2. Pearson correlation coefficients for sub-indexes building used for SWRI index calculation 

 Sub-index Pearson correlation 

coefficient 

Rel Elevation index 0.8404 

Rfm Fuel model index 0.8340 

Rbu Index based on distance from buildings 0.7814 

Rst Index based on slope of the terrain and wind speed 0.7740 

Rro Index based on distance from roads 0.7044 

Rat Index based on aspect of terrain and wind direction 0.6470 

Rtl Index based on distance from transmission lines 0.6408 

 

 

 Site-specific wildfire risk index (SWRI) model definition 

 

Site-specific wildfire risk index (SWRI) takes the following sub-indexes as inputs: Canadian fire 

weather index (RFWI), elevation index (Rel), fuel model index (Rfm), index based on the distance from 

buildings (Rbu), index based on the slope of terrain and wind speed (Rst), index based on the distance 

from roads (Rro), index based on the aspect of the terrain and wind direction (Rat) and index based on 

the distance from transmission lines (Rtl). An overview of all sub-indexes and their dependencies is 

given in Figure 7. 

In order to calculate SWRI index we have used in this phase a simple linear model of superposition of 

input parameters, as shown in the following linear equation: 

 

 
tlatrostbufmelFWI RkRkRkRkRkRkRkRkSWRI  87654321  

(3) 

 

where 
1

8

1
 n nk

. In order to determine the values nk we have decided to use genetic algorithms 

(Goldberg, 1989). Genetic algorithm is a search heuristic that mimics the process of natural selection. 

It is used to generate solution to optimization problems using techniques inspired by natural evolution, 

such as inheritance, mutation, selection and crossover. The most difficult task in genetic algorithm 

designing is to define a fitness function for measuring the quality of the represented solution.  

Our approach was to defined two sets of geographic locations for which we wanted to calculate a site-

specific wildfire risk index. The first set consisted of locations of real historical wildfires that occurred 

during year 2012 in Split-Dalmatia County (we have randomly chosen 100 historical wildfires from 

that period). The second set consisted of randomly chosen locations in Split-Dalmatia County (we 

have selected 250 locations). 

The following requirements for the data set representing the SWRI index calculated for locations of 

real historical wildfires were defined: a) the data set should be as close as possible to maximal value 

255, b) the data set should be normally distributed - for normality test we used the Spiegelhalter test 

(Spiegelhalter, 1983), and c) the data set should be maximally skewed to the left, measured using 

Fisher-Pearson standardized moment coefficient (Doane & Seward, 2011). 
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Figure 7. Overview of all inputs and sub-indexes that build up the final site-specific wildfire risk index 

The requirements for the data set representing the SWRI index calculated for randomly chosen 

locations were defined as follows: a) the data set should be normally distributed (also measured using 

Spiegelhalter test for normality), b) the standard deviation of the data set should be as high as possible. 

Using the aforementioned requirements we represented the wildfire risk index model definition as an 

optimization problem. We included Pearson correlation coefficients into the fitness function for the 

genetic algorithm in a way it defines the mutual ratio of coefficients nk with the following restriction

1
8

1
 n nk

. The value of the fitness function z was defined by: 

 

 ||5.0||5.0 randomrandomrealrealreal ppModeGz  
 

(2) 

 

where subscript real)( represents real historical wildfires, and random)(  represents randomly chosen 

locations. Parameter G represents Fisher-Pearson standardized moment coefficient where negative 

values represent skewness to the left, Mode  is the mode of the dataset normalized into interval [0 1], 
p

 the value of Siegelhalter test for normality where value 1 represents normal distribution, and 

represents a standard deviation normalized into interval [0 1]. Siegelhalter test for normality 
p

is 

calculated using a set of equations shown in (3):  
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(3) 

where b represents the arithmetic mean of the data set and I represents the number of elements of the 

same data set. Fisher-Pearson standardized moment coefficient G is defined by 
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Table 3. Results of the genetic algorithm  

 

Randomly chosen locations representing 

historical wildfires 

Randomly chosen locations  

realMode
 

realp  realG  
random

 randomp
 

z 

0.8824 0.9216 -0.6951 0.1522 0.0788 -0.2886 

 

Please note that the more negative values of the fitness function z , the better the results. The 

output of the genetic algorithm (Table 3) provided us with the final linear equation that defines the 

site-specific wildfire risk calculation: 

 

 tlatrostbufmelFWI RRRRRRRRSWRI  073.0075.0081.0089.009.0096.0097.0399.0

 

(5

) 

   

Equation was implemented into Grass GIS software to calculate SWRI index several times a 

day. The output of the calculation is a SWRI index in a raster format. Using Mapserver we create a 

WMS layer that can easily be shown using Openlayers in a web based user interface. As shown in 

Figure 8, our system automatically communicates with Croatian Meteorological and Hydrological 

Service (DHMZ) several times a day in order to retrieve the latest data such as current temperature, 

wind speed, wind direction, rainfall, humidity, as well as the Canadian Forest Fire Weather Index 

(FWI).  

 

Figure 8. Communicating with Croatian Meteorological and Hydrological Service 

 

 SWRI model evaluation 

 

The level of forest fire risk in Croatia is determined by the “Static forest fire risk” defined in the 

“Criteria for assessing the risk of forest fires” ((MUP, 2003), therefore we decided to compare it to 
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the proposed SWRI index. Parameters taken into account in “Static forest fire risk” are as follows: 

vegetation cover, anthropogenic parameters, climate, habitat, insolation and forest order. For this 

index, regions are classified into 4 categories depending on the level of risk: i.e., category IV: low risk, 

category II: moderate risk, category II: high risk and category I: very high risk. Figure 9 (left) shows 

the region of Split-Dalmatia County classified into 4 aforementioned categories, while Figure 9 (right) 

shows the relation between 154 historical wildfires (that happened during year 2012. in the Adriatic 

region of Croatia) and the “Static forest fire indexes”. As seen in this figure, most of the wildfires 

occurred in low risk regions, meaning that the “Static forest fire risk” does not predict wildfire risk 

index with high accuracy.  

 

  

Figure 9. The region of Split-Dalmatia County classified into 4 static risk categories, where dark red colour represents 

the highest risk (left), and relation between historical wildfires that occurred during year 2012 “with Static forest fire 

indexes” (right). 

 

 

Figure 10. SWRI index for the 154 actual wildfires that occurred during year 2012 (left), and SWRI index for a 

randomly chosen locations and time moments during the same year  

 

On the other hand, Figure 10 (left) shows the proposed SWRI index for the same 154 historical 

wildfires that occurred during the year 2012. From this figure it is obvious that most of the wildfires 

occurred in high risk regions. Nevertheless, in Figure 10 (right) we can see that, for 750 randomly 

chosen locations and time moments during the same year, the value of SWRI in most cases does not 

exceed 150, meaning that most of the regions are labelled as low or moderate risky regions. This is 

expected, as we have modelled SWRI index to be a site-specific index with a focus on a micro-location. 
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 Conclusions 

 

In this paper we proposed a novel method for wildfire risk index calculation - the Site-specific 

Wildfire Risk Index (SWRI). The overall SWRI index is calculated based on 8 sub-indexes: 

Canadian fire weather index, elevation index, fuel model index, index based on the distance from 

settlements, index based on the slope of terrain and wind speed, index based on the distance from 

roads, index based on the aspect of the terrain and wind direction and index based on the distance from 

transmission lines. All sub-indexes were chosen based on the statistical evaluation, where we have, for 

all sub-indexes, calculated Pearson correlation coefficients that show their relation to the historical 

wildfires in the Adriatic region. In other words, for all sub-indexes we have proven their influence on 

the actual wildfires that occurred in Split-Dalmatia County in the history. 

Using genetic algorithms and calculated Pearson correlation coefficients, we have created a final 

model of SWRI index. We carried out the evaluation of the proposed site-specific wildfire risk index 

and compared it to the “Static forest fire index”, where we have shown that SWRI index provides good 

correspondence with the actual wildfires that occurred in the Adriatic region in recent years. On the 

other hand, for randomly chosen locations, the value of SWRI index in most cases indicated a low or 

a moderate level of risk. This was expected, since SWRI index was modelled with focus on a micro-

location and the fact that even in the fire season not all regions should be labelled as regions of high 

risk. 

SWRI index is calculated using geographical information system (GIS), and its main purpose is to 

display relevant information important for firefighting activities before and during the actual wildfire. 

The SWRI index should also be optimized for other parts of Adriatic regions besides Split-Dalmatia 

County using the same methodology for more general results.  
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