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Abstract

Wildfires have become a main forestry concern for pine stands in Galicia (NW Spain). Burned forested areas
have patterns of varying burn severity as a consequence of various topographic, vegetation and meteorological
factors. Determining the relative importance of these factors is necessary to predict fire severity in the canopy,
and therefore, base decisions on fuel management. A spatial study of fire severity for a large wildfire (Oia,
Pontevedra) is presented here. Pine stands within the fire were classified according to the fire severity. The
effect of meteorological (simulated wind speed and direction), topographic (aspect, slope and combined
variables) and canopy fuel structure (LIDAR data) variables was described and then modeled. The presence of
high fire severity patches was significantly linked to areas of higher simulated wind speed, to lower height
stands and to sunny slopes. Simulated wind speed was the most important variable determining the high
intensity areas in the rank order of importance analysis, meanwhile slope and aspect were the second and third
most important variables. Canopy structure presented low variability in the studied area, which leads to a low
importance in classifying fire severity. Variables evaluating alignment of forces, slope and wind direction, have
not been found to be important predictors.

Keywords: Random forests model, Pinus pinaster Ait., fire severity, landscape-base

1. Introduction

Fire severity reflects the impact of heat pulses aboveground and belowground and it can be assessed
as the degree of organic matter consumed (Ryan and Noste 1985, Keeley 2009). Crown fire is
considered as extreme fire behavior (Alexander and Cruz in Werth et al 2011) and it is generally
considered as one of the highest degrees of fire severity, where tree canopies are killed and needles are
consumed (Key and Benson 2006; Lentile et al 2006; Keeley 2009; Holden et al 2009; Lecina et al
2014). That type of stand replacement fires means a challenge for fire managers: they pose an
important risk to population and firefighting crews due to difficulty to suppress them. They also are a
threat to forest production by removing much or the entire tree canopy in a particular area, and resulting
in considerable C emissions (Jimenez et al 2013). They reset the successional and growth processes
of stands and forests (Graham et al, 2004) and can change post-fire dominant vegetation type (Holden,
2009). Moreover that type of fire by consuming all canopy needles leave soil unprotected and prone
to post-fire degradation and erosion (Robichaud et al 2000, Alexander et al 2006, Jain and Graham
2004).

Predicting high severity fire is essential to define areas to apply fuel treatments for severity mitigation
or forest restoration works (Lentile et al 2006, Holden et al 2009, Amato et al 2013), nevertheless
spatial patterns of burn severity over time remain poorly understood to date (Alexander et al 2006;
Fernandes et al 2010; Sikkink and Keane 2012). Topography, vegetation and weather vary over space
and time and they interact in complex ways to influence fire extent and fire occurrence (Turner and
Romme, 1994, Odion et al 2004; Holden et al, 2009). Understanding the relative importance with
which these factors contribute to fire severity is critical information for land managers of fire-prone
landscapes (Graham et al 2004; Holden et al 2009 Sikkink and Keane 2012) since they may permit to
prioritize investments in fuel treatments or to plan suppression tactics.

Despite the relevance of this topic, most of the studies published to date on fire severity are focused in
the USA (Turner et al 1994, Lentile et al 2006, Alexander et al 2006, Collins et al 2007, Holden et al
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2009, Dillon et al 2011, Amato et al 2013). Fire severity studies in Europe were carried out mainly in
Mediterranean forests (NE Spain) (Broncano and Retana 2004, Garcia-Martin et al 2008, Oliveras et
al 2009, Roman-Cuesta et al 2009, Alvarez et al 2013, Lecina-Diaz et al 2014). Most of the studies
assess fire severity using medium resolution satellite imagery data (Turner et al 1994, Lentile et al
2006, Collins et al 2007, Holden et al 2009, Dillon et al 2011, Bradstock et al 2010, Garcia-Martin et
al 2008, Oliveras et al 2009, Roman-Cuesta et al 2009, Lecina-Diaz et al 2014), whereas less studies
used a field sampling-based approach (Broncano-Retana 2004, Holden 2009, Fernandes et al 2010,
Alvarez et al 2013). Information from satellite imagery allows assessing fire severity patterns across
a large scale and over time. This is useful to reflect the complexity of the interaction among
topography, vegetation cover and weather (Amato et al 2013). However field data —based studies
supply with more detailed information on that interaction and at finer scale.

In Galicia (northwestern Spain), a territory of about 30,000 km2, more than 10,000 fires occur annually
(D.X. Montes 2010). That represents about than half of fires in Spain (MARM 2010). In that area,
suitable conditions for biomass growth, summer drought and abundant ignition sources coincide
(Vazquez 2006; Moreno and Chuvieco 2013), favoring high severity fires. Most of these fires occur
in very continuous and productive conifer stands frequently resulting in stand replacement crown fires.
These fires cause important economical losses and severe ecological impacts. Given the dominance of
rainy climate and the steep terrain in the area, the main undesirable post-fire consequence is the soil
erosion. This problem is more dramatic in crown fire-affected areas where soil losses measured
following this type of fire in Galicia are considered the highest rates after wildfire in the Southern
Europe, requiring costly rehabilitation treatments (Fernandez et al 2011; Vega et al 2014).

Despite of the tremendous impact of the high severity fires in Northwestern Iberian Peninsula, not a
single study has been carried out on this topic in that area. Therefore, we considered essential to gain
knowledge in how fine scale variables, used as inputs from empirical fire behavior models (Rothermel
1972, Rothermel 1991, Van Wagner 1977, Cruz et al 2004) and their spatial and temporal variability
during the occurrence of a wildfire, can affect the severity patterns in a landscape scale. In the present
paper we used fire related variables (topography, weather and fuel structure parameters) to evaluate
their importance on high severity fire patterns in Oia fire in Galicia. More specifically we addressed:
(1) assessing the differences of these variables between high-severity crown fire areas and low severity
areas (ii) fitting statistical models to determine their capability to predict high-severity fire occurrence
and the relative importance of each predictor variable.

2. Methods

2.1. Study area
Our research focused on the Oia wildfire (area > 500 ha) occurred during the summer of 2013 in the
coastal area of Galicia (Northwestern Spain) (Fig 1). This wildfire affected mainly Pinus pinaster Ait.
(maritime pine) pole-size stands.

\ I S Figure 1. Location of the study area, in Galicia (NW
S - b e Spain)

Qia fire
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The Oia fire occurred in the municipalities of Oia and O Rosal (Pontevedra province). The elevation
of the study area ranged from 30 to 515 m. The aspect was generally southeast, with slopes between 0
and 65%. Maritime pine and Eucalyptus globulus Labill. (blue gum) were the dominant tree species
and the main shrub species were Ulex europaeus L., Pteridium aquilinum (L.) Kuhn, and Pterospartum
tridentatum (L.) Wilk. The fire was human-caused and started in 26" August 2013. It was brought
under control two days after the ignition. It burned 1810 ha. According to Spain Lithological Map
1/50.000 (http://www.igme.es/internet/cartografia/cartografia/magna50.asp, accessed on 21 June
2014), the soils in this area are developed from schist, slates and granite.

Meteorological conditions during the wildfire are presented in Table 1.

Tablel - Meteorological conditions during the wildfire. Variables from Canadian Forest Fire Weather Index (Van
Wagner 1987): FFMC: Fine Fuel Moisture Code; DMC: Duff Moisture Code; DC: Drought Code; ISI: Initial
Spread Index; BUI: Buildup Index; FWI: Fire Weather Index. Data from meteorological station located at 4 km from
the burned area (Meteogalicia, Xunta de Galicia)

Variable 26" August 28M August
Temperature (°C) 18.8(13.4-26.1) 20.6(15.3-26.7)
Relative humidity (%) 63.3(44-85) 61.6(45-79)
Wind speed (km h-1) 20.4(5.4-33.3) 17.7(6.1-33.8)
Wind gusts (km.h-1) 36.2(15.1-53.6) 33.3(11.7-56.7)
Wind direction (°) 50 76
FFMC 88 88

DMC 87 87

DC 512 512

I1SI 5 5

BUI 122 122

FWI 21 23

2.2. Field sampling and spatial data
Wind speed and direction, fuelbed load and structure, slope, fuel moisture content, distance from the
surface fuelbed to the lower limit of the canopy stratum and crown bulk density are the input variables
determining crown fire occurrence (Van Wagner 1977, Cruz et al 2004).
Fieldwork was carried out in the following weeks after the fire. Areas affected by crown fire were
visually identified as the patches where the crown fine fuel consumption was complete. The perimeters
were tracked using a Trimble Juno 5B GNSS to delimit these areas from where tree crown were totally
or partially scorched in the same stand. The areas of interest for the present study were delimited in a
Geographic Information System (GIS) as continuous stands where the high-severity fire (crown fire)
occurred and surface or low severity fire was observed in the surrounding area. In this way, two
contrasted fire severity levels were considered: high and low.
A grid of 100 m was overlaid on a map of the areas of interest. The starting sample point was randomly
chosen and 41 sample points were selected. Circular plots of 10 m radius were established on each
point. In each plot, all trees with diameter at breast height (Dbh) >5 cm were tagged. Diameter at breast
height, total height and post-fire crown base height were measured for each tagged tree. Descriptive
characteristics of the plots are presented in table 2. Fire direction was determined observing the char
patterns on the tree trunks and the stuck pine needles.
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Table2. Mean characteristics and range of monitored plots. Dbh: diameter at breast height; Ht: total height; CBH:
crown base height, G: basal area. Minimum and maximum observed values of means per plot between brackets

Type of fire Density (trees.ha™) Dbh (cm) Ht(m) CBH(m) G(m2.ha?)
High-severity ~ 1364(265-2487)  16.4(11.2-22.9) 12.4(8.8-15.8)  6(1.9-9.7)  29.4(9.9-56.7)
Low-severity ~ 881(368-1741)  21.5(14.9-36.6) 15.3(9.4-29.6) 8.4(2.5-23.1) 32.4(7.9-53.8)

Given the landscape-scale and spatial characteristics of a large wildfire, we used the methodology
proposed by Stratton et al (2006) for wildland fire spatial analysis of the fire environment (weather,
fuel, topography) variables.

Grid-based digital elevation model (DEM) at horizontal resolution of 25 m was obtained for the study
area from the Spanish Geographic National Institute
(http://www.ign.es/ign/layoutin/modeloDigital Terreno.do, accessed on 21st June 2014). The DEM
was used to calculate the slope and aspect (topography variables) within each fire digital perimeter in
ArcGIS v. 9.3 (ESRI 2008).

The same DEM was utilized to simulate the wind fields within the fire perimeters with WindNinja
(Forthofer, 2007). WindNinja is a mass-consistent fluid flow dynamics models that estimates the
modifying effects of topography on synoptic winds. Although presumably local wind field could be
significantly affected by the fire itself, obtaining direct information on wind field within fire perimeter
was not an operational option. Wind and temperature data were obtained from Meteogalicia weather
stations network (http://www2.meteogalicia.es/galego/observacion/estacions/estacions.asp, accessed
on June 21, 2014). The two closest weather stations were selected to supply with the information
necessary for the corresponding wind simulations. Characteristics of weather stations are shown in
table 3. Wind simulations were made for the wildfire at ignition time and at different moments of the
fire run by dividing burned area in function of the approximated position of the fire front, by using the
information provided by the suppression crews. Vector files (point geometry) containing wind speed
and wind direction were generated and clipped for the study area.

Table3 - Characteristics of weather stations used in the wind simulation (Meteogalicia, Xunta de Galicia)

Station name Elevation (m) Distance to study area (km)
Castro Vicaludo 440 4
Aloia 480 15

A database was created including topography (aspect and slope) and simulated wind variables (wind
speed and direction) for each pixel within the fire perimeter. With the aim of evaluating if the
concurrent effects of the simulated wind and slope is determinant for the occurrence of high-severity
crown fire in the same way it is for fire behavior (Weise and Biging, 1997) two combined variables
were calculated and included:

a) Terrain slope in the wind direction (fig 2), ranging from positive value of maximun slope (wind
vector aligned with upslope vector) to negative value of maximum slope (wind aligned
downslope) and

b) the difference between upslope direction and wind direction (fig 3) vectoring as described in
Rothermel (1983), where 0° is complete alignment of slope and wind blowing upslope, and
180° means alignment of slope and wind blowing downslope.
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Figure 2 and 3. Sketches of: slope in wind direction calculation, referenced to maximum slope (left) and degree of
alignment between slope and wind vector (a), referenced to the slope vector (maximum slope) (right)

National Aerial Ortophoto Program (PNOA) LIDAR data
(http://www.ign.es/PNOA/presentacion.html) was used to account for the effect of vegetation structure
on fire severity. Light Detection and Ranging (LIDAR) technology has proven its capability to
measure canopy and surface fuel structure and to generate landscape-scale maps of these variables
(Riafo et al 2004, Andersen et al 2005, Skowronski et al 2011, Mutlu et al 2008,van Aardt et al 2011,
Jakubowski et al 2013; Gonzalez-Olabarria et al 2012). In fact, these studies have shown that LIDAR
data allow to fit models to estimate variables directly linked with crown fire behavior, such as canopy
bulk density (CBD), crown fuel load (CFL), canopy base height (CBH), and also understory stratum.
In this area of study the LIDAR flights were carried out in the year 2009. Values of the laser height
distribution (mean, minimum, maximum, mode and percentiles) and canopy cover above 2 m were
added to the statistical analysis as a potential predictor for fire severity on canopy, given the above
relationship between these variables and the vegetation variables that drive crown fire initiation (CBH,
surface fuel structure) and spread (CFL, CBD).

2.3, Statistical analysis

Two statistical tests were applied to the variables distribution to assess significant differences between
the two severity categories considered. The Kruskal-Wallis one-way analysis of variance was used to
examine significant differences for each potential continuous variable. Fisher's Exact Test was applied
to the contingency table to examine the significance of the association between fire severity and aspect
class.

Random Forests (RF) (Breiman, 2001) is a variant of Classification and Regression Trees (CART).
This technique is an ensemble method that fits many classification trees to a data set and then combines
the predictions from all the trees. Approximately 66% of the data are used in a classification tree with
the remaining data used as a validation data set (called out-of-bag observations). An estimate of the
error rate is obtained based in this out-of-bag, or OOB, data. RF has shown its power in the analysis
of ecological data in a landscape base in the Cutler et al (2007) study, in which RF showed higher
classification accuracy than four other commonly statistical classifiers. Holden et al (2009) used
Random Forest to assess the ability of landscape variables to predict severe fire occurrence and Pierce
et al (2012) also used RF for modeling and mapping four canopy fuel variables at a landscape level.
We used this statistical approach to assess the ability of topography, fuel and wind variables to predict
fire severity on forest canopy layer. We used the Random Forest Package developed for R (R Core
Team, 2013) by Liaw and Weiner (2002). A first RF model was adjusted containing weather and
topographic variables (6 variables) and all the LIDAR variables (67 variables) into the dataset to
compare the goodness-of-fit of each model and to select the most relevant variables. For a suitable
evaluation of the variable importance, multicollinearity between variables was analyzed using the
Pearson's correlation coefficient: the threshold of 0.75 was applied as criteria for removal any of the
correlated variables. The final RF models were adjusted with the dataset containing the remaining
variables (6 or 7 variables). Sampsize option was used to account for the lack of balance in the datasets.
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High-severity observations were less than the low-severity ones, so sampsize was set up in order to
RF select the same number of observations for each type of fire severity by randomly decreasing the
sampling size of scorched fire observations.

Model error stabilized after 2000 bootstrap replicates. The m parameter (number of predictors
randomly selected at each tree node as potential variables to base the split on) was optimized with 3
of the 6 explanatory variables. Variance plots were used to identify the relative strength of each
predictor variable.

3. Results

3.1. Variables related to fire severity
Mean value of terrain slope was higher in low severity-affected stands than in high severity patches
(table 4), but the difference was less than 4%. Mean wind speed was higher for high-severity patches
than for low-severity ones, with a difference of 2.2 km.h-1 between them. Minimum wind speed values
were also higher for high-severity patches. Mean values for simulated wind direction were very close
between fire severity levels: 66 and 67 degrees for high and low severity respectively. Mean values
for slope in wind direction were very close, with a difference of 2.4% between fire severity levels and
very similar ranges for both. Angle between maximum slope and wind direction showed a higher mean
value for high severity patches, 109 degrees, and the difference with low severity patches was 9
degrees.
Kruskal-Wallis one-way analysis of variance test determined that only the distribution of terrain slope,
wind speed, and angle between maximum slope direction and wind direction values were significantly
different (p<0.05) between fire-severity levels.

Table 4- Mean and range for topography and weather variables values in the studied area. SD = standard deviation.
Obs = number of observations

Fire type _Statist Slope Wind Speed _ Wi_nd S!ope _in wind Max.slope—wind Obs
ics (%) (km/h) direction (°) direction (%) direction (°)
Min. 4.0 12.6 55 -44.7 1
High_ Max. 60.6 27.6 81 58.7 180 3335
severity Mean 26.4 20.3 66 -3.4 109
SD 12.5 2.5 4 18.1 45
Min. 0.3 8.7 53 -48.7 0
Low Max. 65.8 27.6 109 65.5 179 1781
severity Mean 30.2 18.1 67 -1.0 100
SD 14.7 3.1 8 23.6 48

Table 5 shows the observed percentage distribution, in aspect class, for each severity level. High
severity fire was significantly more frequent in S, SE and SW aspect classes (sunny slopes) (Fisher’s
Exact Test; p-value < 0.01). Conversely, E, N, NE and NW aspect classes showed more low-severity
points.

Table 5- Percentage of pixels by aspect class in the studied area. Obs = number of observations

Fire type Flat N NE NW E S SE SW w Obs
High-severity 0.0% 1.8% 27% 7.2% 7.5% 209% 26.9% 16.1% 17.0% 335
Low-severity 0.0%  5.0% 7.0% 14.3% 9.5% 15.9% 19.1% 9.6% 19.6% 781
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3.2. RF model

Table 6 shows the statistics for the only relevant LIDAR variable in classifying high severity fire after
fitting the RF model. According the RF classification, maximum elevation (Elev max) of LIDAR pulse
appeared to be the only important variable, and it was significantly different (Kruskal-Wallis test,
p<0.05) between high and low severity areas. Mean value of LIDAR maximum elevation was higher
for low severity patches than for high severity ones.

Variable Type of fire  Mean SD Minimum  Maximum
High-severity 8.00 3.27 0.61 18.93

Elev max .
Low-severity 9.27 4.54 0.46 33.59

Table 6. LIDAR variable used for determining severity crown fire occurrence. Elev max = maximum elevation of

LIDAR pulse.

Table 7 shows the out-of-bag (OOB) estimate of error rate for the classification of fire severity. Total
OOB estimate was 18.46%. For high severity estimations the number of misclassified observations

was 23.72%.

Table 7. Confusion matrix for the Random Forests model predicting severity crown fire occurrence in each severity
level. Obs = observed fire, Pred = predicted fire, OOB= out-of-bag estimation of error.

Pred.
Obs. Low-severity High-severity
Low-severity 700 137 16.37%
High-severity 79 254 23.72%

OOB estimate: 18.46%

Figure 4 shows rank orders of variable importance for the RF model. The most important variables
classifying fire severity are at the top of the y-axis. A weather variable, wind speed, was the most
important one for this fire. Slope and aspect class, both topography variables, were the second and the
third most important variables. Maximum elevation of LIDAR pulse, a fuel variable, was the less
important variable in classifying fire severity.

WIND SPEED ©

SLOPE @

ASP CLASS o

WIND DIR o

SLOPEWIND DIR @

ELEV_MAX ©

Oia fire. n=2000, m=3

T T T T
60 a0 100 120

MeanDecreaseAccuracy

Figure 4. RF variable importance rank plot for the studied area. The most important variables predicting crown fire
severity are at the top of the y-axis. n= number of trees in the RF model and m = number of predictors randomly
selected at each tree node as potential variables to base the split on.
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4. Discussion and conclusions

4.1. Variables related to fire severity
The effect of slope on severity is dissimilar in literature. Some authors have found positive correlations
between fire severity and slope (Jimerson and Jones 2003, Alexander et al 2006, Holden et al, 2009).
Contrarily, Bradstock et al (2010) found a negative correlation between fire severity and slope, which
is explained by the authors as a possible effect of rocks outcrops, common in slopes, lowering the fire
intensity. Although the slope was significantly different between severity levels in our study,
difference in mean values was less than 4%, which we consider not having a large effect on fire
behavior.
Few studies have taken into account the effect of wind speed on fire severity and all of them have
followed different approaches to the one we used in this study. Dillon et al (2011) used mean and
maximum values of wind speed for a 10-days period starting on the detection date of each fire and
number of days with wind speed above 20 miles/hour. These wind variables were positively related to
fire severity in only one of the six studied regions. Collins et al (2007) used mean wind speed values
for each burning period in two fires and they observed contrasting associations between wind speed
and fire severity. Bradstock et al (2010) found a positive association between high severity and
extreme weather, variable that includes the effect of wind speed. Our approach, in which wind speed
was simulated taking into account the effect of topography, seems hardly comparable. However, the
positive association we found between high severity fire and wind speed seems consistent with the
results in the above studies.
Alignment of wind and slope did not seem essential for high severity occurrence. Statistical difference
was found for the variable angle between slope and wind direction between fire severity levels. Despite
of these results, difference for mean values between fire levels was only 9 degrees. This scarce
difference between fire severity levels may point out that was not determinant for high severity
occurrence in the studied area.
Studies in fire severity have found dissimilar results regarding the effect of aspect on fire severity.
Weatherspoon and Skinner (1995) and Alexander et al (2006) have found that patterns of severity were
associated to the aspect, underlining that south-facing slopes or flat terrains tended to burn with higher
severity than other aspects. Holden et al (2009) found that at lower elevations, north-facing slopes
were proner to have high intensity fire likely because a higher vegetation growth than in south-facing
slopes, whereas at higher elevations solar insolation would increase drying of surface fuels in south-
face slopes, which are associated to higher burn severity. Dillon et al (2011) also found north-facing
slopes to focus high severity fires for five of six ecoregions studied. Nevertheless, in the Pacific
ecoregion the probability of high severity fire was highest in the warmest aspects, which may be
explained because aspect is not a limiting factor for productivity in these areas with high precipitation.
In our study, given that the elevations were relatively low and the annual rainfall is high, we consider
that the fuel availability is not limited by the aspect. Summer drought is common during the fire season
in Galicia, which could act drying the sunny slopes and leading to an increased probability of severe
fire in those aspects.
ELEV_MAX variable was positively correlated to canopy height (Andersen et al, 2005), so looking
at table 4 one can say that, under the same under conditions, high severity fire tended to occur more
frequently in lower (i.e younger) stands. Studies in maritime pine stands for the same area (Jimenez et
al 2013, Fernandez-Alonso et al 2013, Gomez-Vazquez et al 2013) have shown that there is a positive
correlation between mean stand height or dominant height and canopy base height (CBH). Thus, higher
stands may have also higher CBH values and therefore, lower possibilities of crown fire occurrence.

4.2. RF model
Despite of the correction for the unbalanced dataset, since the number of high severity observations
was lower than low severity observations, results showed that RF had more difficulties to correctly
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classify high severity observations. A possible explanation for such phenomenon is that less
information on high severity occurrence was available for RF, which complicated its correct
classification. Anyway, RF model was a useful tool to determine which variables were related with
high severity occurrence and which was the relative importance of each of them.

This case of study was a good example of wind-driven fire. Meteorological station data (not shown)
presented a constant wind conditions during the fire and the fire shape (Anderson, 1983) was narrow
and elongated, with an approximated length to width ratio of 4:1. Information provided by fire fighting
services described the fire as driven by strong winds, with high spotting activity and the most of the
fire runs occurring during the first night. Our results seem compatible with these observations. High
wind gusts were observed for the closest weather station and mean wind speed was considerably high
during the fire. Under these conditions it seems reasonable that wind speed played a determinant role
in the fire behavior in this area and, hence, controlling fire severity, as it was shown by the RF model.
Fuel variables were the last in the importance ranking determining high severity occurrence for this
fire. A possible explanation is the homogeneity of canopy fuel structure within this area: mean values
for LIDAR maximum elevation of canopy layer were very close between fire severity levels. This fact
supports that studied stands were considerably similar for this fire and canopy structure did not play
an important role in high severity occurrence.

Regardless of the favorable results, some limitations of our approach are evident. We used driver
variables of fire behavior to estimate fire severity, but we acknowledge that fire behavior models do
not necessarily provide good predictions of fire severity (Alexander et al 2006). Nevertheless, studied
variables here are well-known for affecting fire intensity, and in the case of a tree stand, a higher
intensity can lead to crown activity and to a higher canopy fuels consumption (Alexander, 1982).
The effect of wind speed explaining high severity occurrence must be taken with caution. Windninja
simulation only accounts for the effects of topography, but obviously there was an interaction between
fire and the atmosphere surrounding fire that affects the crown fire activity (Coen et al 2004). In cases
with moderate wind conditions, these interactions may become more important for fire behavior than
local winds as convective plume created by the fire modifies notably its surrounding atmosphere
(Potter, 2012) and fire -induced turbulence can be critical to understand apparently inexplicable fire
behavior (Seto et al. 2013).

Results regarding the variable importance should be taken in the context of the studied area. In our
study most of the stands had similar ages and all of them were pure and even-aged, which means that
canopy fuel structure was quite similar within each stand. Moreover, fuel treatments aimed at reducing
fire severity on canopy were not identified in the studied area. Under those conditions is
understandable that weather variables were the most important predictors of high severity in two of
the fires because their higher variability within the perimeter.

However our results seem reasonable and consistent with the current knowledge on fire severity
phenomenon. In despite of the limitations of the wind simulation approach used, wind speed emerged
as the most important variable predicting high severity occurrence. That agrees with the central role
the current models give to wind in fire intensity and rate of spread, and accordingly, to fire severity.
Our results also suggest that slope and aspect class, the latter likely as a surrogate of fuel moisture,
seemed to play an important role in determining crowning occurrence and fire severity on canopy.
Having into account the rate of accuracy of the RF model, this methodology may be helpful for fire
managers to delimitate and plan fuel treatment works for severity mitigation, in areas where fire events
recur under a fixed synoptic wind condition and post hoc case study
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