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Abstract
This study proposes a Data Envelopment Analysis (DEA) framework to assess 

the technical efficiency of 26 European countries in the last five years, under the 

ongoing 2020 energy policy. DEA is used to estimate efficiency which is comple-

mented by bootstrapping to obtain statistical inferences. Further, we explore the 

relationship between the targets regarding energy efficiency, renewable energy 

share and the greenhouse gas emissions and, in addition, the electricity prices 

derived from the energy system on the efficiency levels of European countries 

through a panel data truncated regression with bootstrapping. It is observed that 

the bias-corrected efficiency of the economies increased approximately 13%, on 

average, since 2009. The results achieved bring into view that the efforts regard

ing the energy policies developed in each country to follow 20-20-20 targets, 

have not threatened the improvement of their efficiency. 

1. Introduction

In the last decades, the European Union (EU) has been promoting an 

integrated approach to climate and energy policy, aiming combat climate 

change, increase the EU’s energy security and strengthen its competi-
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tiveness. There is also a geostrategic objective, which aims to reduce 

excessive dependence on imported fossil fuels. In fact, the long-lasting 

instability in many fossil fuel-producing countries increases the price of 

energy and reinforces the need to find alternatives. As a consequence, a 

paradigm shift has arisen in the global energy sector, foreseeing a sus-

tainable and environmentally friendlier development. The climate and 

energy package in EU has been set through binding legislation, which 

establishes the following three key objectives for 2020, known as the 

20-20-20 targets (EU, 2009):

• 20% reduction in greenhouse gas emissions from 1990 levels;

• Raising the share of energy consumption produced from renewable 

resources to 20%;

• A 20% improvement in the energy efficiency.

Within this context, the main objective of this work is to determine 

the technical efficiency of EU countries for the last five years with avail

able data, i.e., from 2009 till 2013. The level of the technical efficiency is 

evaluated through the mix of energy consumption, labor force and gross 

fixed capital formation (measuring the value of fixed assets) on the Gross 

Domestic Product (GDP) maximization of each economy. 

From an economics point of view, each economy is efficient if it in-

creases its GDP by decreasing the used resources, through technological, 

behavioural and economical changes. In the scope of energy efficiency, it 

encompasses the energy reduction for a given service or level of activity 

(WEC, 2008), i.e., each economy should promote the energy efficiency by 

eliminating the redundant energy consumption. In terms of environmental 

perspective, it is important that the growth of the economy is based on 

the sustainable use of resources to produce outputs. 

Additionally, this work also explores factors concerning the penetration 

of renewable energy in total energy consumption, the greenhouse gas 

emissions and the electricity prices on the efficiency estimates.

The technical efficiency of the economies under analysis is evaluat

ed through Data Envelopment Analysis (DEA). The potential of DEA in 

energy studies has been gradually investigated by researchers due to 

its ability in combining multiple factors, being an important method for 
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benchmarking in the energy sectors, particularly in the electricity area 

(Zhou, et al., 2008). DEA allows the identification of the countries with 

best practices, from which linear combination defines the best frontier 

technology. By reference to this frontier, the technical efficiency for each 

country is determined, through the use of the fundamental resources as 

energy, labor and capital to maximize the production of the GDP. 

Since DEA is a deterministic approach, the construction of the best 

frontier can be affected by random noise or measurement errors in the 

data. To assure the robustness of the efficiency estimates, the DEA as-

sessment is complemented with the appropriate bootstrapping to derive 

statistical inference. To explore the relationship between the efficiency 

estimates and the impact of the renewable energy penetration, the green

house gas emissions and the electricity prices, a panel data truncated 

regression is used. 

The remainder of this paper is organized as follows. Next section 

describes the literature review and the following one presents the perfor-

mance assessment methodology used. Fourth and fifth sections present 

the data used and the results achieved. Finally, last section summarizes 

the paper findings. 

2. Literature review

In the energy literature, there is no consensus on the appropriate 

method for defining and measuring energy efficiency. It is common to 

proxy energy efficiency using a simple average indicator such as the ratio 

of energy to GDP or the reciprocal (Khademvatani, Gordon, 2013). This 

traditional energy efficiency indicator takes energy consumption into 

account as a single input that produces an economic output; therefore, 

some other key inputs are ignored, such as capital and labor (Zhang, et 

al., 2011). Energy consumption must be combined with other inputs to 

produce an economic output, such as labor or capital. Boyd and Pang 

(2000) argue that energy efficiency improvement relies on total factor 

productivity improvement. To overcome the disadvantage of the partial 
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energy efficiency indicator, an increasing number of researchers have 

adopted the DEA for the assessment of total factor energy efficiency in 

different countries from the viewpoint of technical efficiency. Some exam-

ples of such studies are (Hu, Kao, 2007), (Hu, Wang, 2006), (Chien, Hu, 

2007), (Zhang, et al., 2011), (Zhou, et al., 2012) and (Menegaki, 2013). 

To consider statistical noises, Zhou, et al. (2012) present a parametric 

stochastic frontier analysis (SFA) approach to measure total factor energy 

efficiency performance of OECD countries. The SFA method assumes that 

deviations from the efficient frontier are composed by inefficiency and 

statistical noise terms, however it is a parametric technique that requires 

a-prior specification of the functional form of the best practice frontier 

as opposed to non-parametric nature of DEA. Although there are many 

studies investigating the total factor energy efficiency, its relationship 

with the use of renewable energy sources has been studied by fewer 

authors, for instance (Zhou, et al., 2012) and (Menegaki, 2013). In order 

to fulfil some gaps existing in the literature, we assess the total factor 

energy efficiency of EU economies, investigating the relationship between 

their efficiency and the penetration of renewable energy sources. This 

analysis is performed through the suitable bootstrap framework (Simar, 

Wilson, 1998; 2007) to obtain statistical inferences on efficiency estimates 

derived from DEA models. 

3. Performance assessment methodology

The total factor energy efficiency for each economy is evaluated 

through the technical efficiency derived from the DEA model, introduced 

by Charnes, et al. (1978). DEA is a non-parametric approach to assess 

the relative efficiency of a homogeneous set of Decision Making Units 

(DMUs) in producing multiple outputs from multiple inputs. DEA is used 

to assess the technical efficiency of the European countries in produc

ing GDP by taking into account the production factors. DEA allows the 

identification of the best practices DMUs and their linear combination 

defines the frontier technology which envelops all DMUs observed in the 
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production possibility set (PPS). For the inefficient DMUs located inside 

the PPS, the magnitude of the inefficiency is derived by the distance to 

the frontier and a single summary measure of efficiency is calculated.

Consider a set of 𝑛 DMUs 𝑗 (𝑗=1,…,𝑛), each consuming m resources 

(inputs) 𝑥𝑖𝑗 (𝑥1𝑗,…,𝑥𝑚𝑗) to produce s results (outputs) 𝑦𝑟𝑗 (𝑦1𝑗,…,𝑦𝑠𝑗). For an 

output maximizing perspective and assuming the most productive frontier 

observed, defined by constant returns to scale, the relative efficiency of the 

assessed DMUo can be evaluated using the linear programming model (1): 

 ≥ ∑  ,  ≤ ∑  , 	  (1)

The optimum solution of model (1), ℎ∗ , corresponds to the maximum 

factor by which the outputs levels can be expanded with the current level 

of resources. The relative efficiency (𝜃) of the assessed DMUo is estimated 

by the reverse of ℎ∗ . DEA enables to identify the efficient DMUs which have 

the best practices and the inefficient units which activity can be improved. 

The efficiency measure is equal to 100% when the unit under assessment 

is efficient, whereas lower scores indicate the existence of inefficiencies. 

For inefficient units, it is also possible to obtain, as by-products of the 

DEA efficiency assessment, a set of targets for becoming efficient, which 

are feasible points observed on the frontier.

To correct the DEA efficiency estimates for bias, the bootstrapping 

method is used according to Simar and Wilson (1998), which is suitable 

for use with DEA efficiency estimates, ranging from 0 to 1. Efron (1979) 

proposed bootstrapping based on the idea of resampling from an original 

sample of data to derive replicate datasets from which statistical infer

ence can be performed. Resampling directly from the original data (naïve 

bootstrap) provides a poor estimate of the data generating process (DGP) 

as the efficiency estimates computed by model (1) are truncated, with 

upper value equal to one and there may exist several estimates equal to 

unity. Simar and Wilson (1998) proposed the smoothed bootstrap method 

suitable to DEA, estimating the original densities of the non-parametric 

efficiency scores using kernel smoothing methods combined with a reflec-

tion method (Silverman, 1986) by mimicking the DGP. This procedure was 

implemented using the statistical software R including the FEAR library, 

developed by Wilson (2008). Thus, for each DMU is derived a confidence 
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interval for 𝜃, the bias and the bias-corrected efficiency, . These scores 

are used to assess the countries performance.

To explore the factors that can be associated with good efficiency levels 

of the economies we use the bootstrap-truncated regression formulated 

according to the double bootstrap method (algorithm #2) proposed by 

Simar and Wilson (2007), in which efficiency scores are bootstrapped in 

the first stage, as explained before, and then the second step is performed 

based on the bootstrap truncated regression. This approach is used to 

investigate the penetration of renewable energy into the total energy 

consumption, the greenhouse gas emissions and electricity prices on 

efficiency levels of countries. Additionally, a panel data truncated model 

controlling for time effect is used. Considering the country 𝑗 (𝑗=1,…,𝑛)   
in the time period 𝑡 (𝑡=1,…,𝑚), the impact of the regressors, defined by 

variables 𝑧𝑗𝑡 on efficiency score 𝜃𝑗𝑡, is assessed by the following model: 

𝜃𝑗𝑡=𝛼𝑜+𝛿𝑡+𝑧𝑗𝑡𝛽+𝜀𝑗𝑡 (2)

where 𝛿𝑡 is a vector of dummy variables for each year, 𝛼𝑜 denotes the 

intercept and 𝛽 corresponds to the vector of regression coefficients to be 

estimated and 𝜀𝑗𝑡 is the error term with a ) distribution with a trun-

cation at (1−𝛼𝑜−𝛿𝑡−𝑧𝑗𝑡𝛽). The 𝜃𝑗𝑡 corresponds to the efficiency of country 

𝑗, in year 𝑡, estimated using model (1) and corrected by bootstrapping. 

4. Data description 

This study considers the panel dataset of EU-28 countries, for which 

data ranges from 2009 till 2013. Data on labor, energy consumption, 

capital and GDP are collected from the Eurostat database. The GDP 

is defined at market prices, in Purchasing Power Standard (PPS) per 

inhabitant. Total energy consumption encompasses gross inland energy 

consumption by renewable and nonrenewable energies, in tons of oil 

equivalent (toe) per inhabitant. Capital is the real gross fixed capital 

formation at market prices, in PPS per inhabitant. Labor is assessed 

by the employment rate, representing employed persons as a percent
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age of the labor force which is the total number of people employed 

and unemployed (persons aged 15 to 74). Before proceeding with the 

analysis, the existence of outliers is checked as the location of the best-

-practice frontier is sensitive to extreme observations. From the original 

28 countries, based on the available data, 2 were considered outliers 

(Luxembourg and Irland). Additionally, some data about Greece is not 

available in 2013, and, consequently excluded from the assessment. Thus, 

the final sample includes 129 observations, from 26 countries, excluding 

data from Greece in 2013 year. 

Descriptive statistics of the variables across countries, in the corres-

ponding year, are summarized in Table 1.

Table 1: Descriptive statistics of the data under analysis.

Capital (PPS) Labor (%) Energy (toe) GDP (PPS)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

2009 4253.8 1106.1 0.91 0.04 3.35 1.13 21069.2 6260.1

2010 4230.8 1134.1 0.90 0.04 3.47 1.30 21961.5 6510.4

2011 4357.7 1222.2 0.90 0.04 3.37 1.21 22646.2 6513.3

2012 4326.9 1272.0 0.89 0.05 3.31 1.18 23080.8 6460.0

2013 4264.0 1223.0 0.89 0.05 3.29 1.25 23344.0 6485.6

In the time span under study, the mean GDP per capita raised about 

2% while energy per capita and labor usage decreased by 1.7% and 1.9%, 

respectively, and the capital remained almost unchanged. In terms of stan-

dard deviations, the higher values are observed with respect to capital, 

energy used and GDP, which show that the countries are heterogeneous. 

The highest difference among countries is observed on the amount of 

total energy used per capita which implies that European countries may 

have different energy strategies to support their economy. 

5. Empirical results: DEA efficiency assessment

The technical efficiency for each country is assessed by model (1), 

evaluating the capacity of each economy in maximizing the GDP pro-
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duced taking into account the fundamental inputs (energy, labor and 

capital). The relative efficiency of a country in a given year is estimated 

by comparison to the best practices observed during the period ana-

lysed, ranging from 2009 to 2013 years. Based on the inputs-output 

mix of the model, the CRS and VRS frontiers are very close, and the 

CRS assumption is considered in the DEA model (Dyson, et al., 2001). 

These efficiency estimates provide insights into potential improvements 

by taking into account statistical inference derived through bootstrap-

ping framework.

The correction of the DEA efficiency estimates for bias, has been 

performed by using 2000 bootstrap samples. Table 2 summarizes results 

for the technical efficiency, bias-corrected efficiency, standard error and 

bias. Bias-corrected efficiencies reveal that magnitude of the corrected 

efficiencies are slight lower than the original efficiencies, although this 

variation is small. As the absolute value of bias estimates are larger than 

the standard error estimates for each country, the bias-corrected efficiency 

estimates are preferred to the original efficiencies, since they represent 

a more precise estimate of the true efficiency. 

It is possible to conclude that since 2009 the bias-corrected efficiency 

of the economies increased approximately 13%, on average, which is a 

relevant improvement. These results suggest that efforts regarding the 

energy policies developed in each country to follow 20-20-20 targets 

have not threatened the improvement of their efficiency. Looking now 

at the distribution of efficiency scores across countries, given in Table 

3, it is observed that each country follows the same improvement trend 

as described above. Considering as benchmarks the countries that have 

the bias-corrected efficiency equal or higher than 95%, Denmark was 

the single benchmark in 2010, Austria, Netherlands and United Kingdom 

became benchmarks in 2011, Sweden has been established as benchmark 

in 2012 and Germany became efficient in 2013.
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Table 2: Results of original and bootstrapped average 
efficiency estimates.

Year 2009 2010 2011 2012 2013

Original eff. Score 75.9% 79.3% 81.5% 84.2% 86.0%

Bias-corrected eff. 74.0% 77.3% 79.5% 82.1% 83.6%

Bias -3.5% -3.5% -3.2% -3.2% -3.4%

St.dev. 1.9% 1.9% 1.7% 1.7% 1.7%

Considering the efficiency average from 2009 till 2013, it is also ob-

served a stability on the performance of Denmark, Austria, Germany, 

Netherlands, Sweden and United Kingdom (with average efficiency scores 

higher than 92%). Belgium, Cyprus, Spain, France, Italy, Finland, Malta and 

Portugal have an average performance, presenting an efficiency ranging 

from 82% to 89%. Cyprus has the highest increasing improvement, about 

25%, followed by Portugal which efficiency has increased by 21%, over 

the period analysed. Finally, Bulgaria, Czech Republic, Estonia, Hungary, 

Latvia, Poland, Romania, Slovakia, Croatia, Lithuania and Slovenia have 

an efficiency ranging from 51% and 75%. In this group, Lithuania has 

the highest efficiency (75%).

From this group, Bulgaria, Romania, Lithuania, Poland and Croatia 

have the highest increasing improvement in efficiency, over 20%. Bulgaria 

presents the lowest average efficiency, 51%, although it has improved the 

efficiency by 26% during the study period. Also noteworthy is the fact 

that Estonia, with an average efficiency equal to 60%, did not improve 

its efficiency in the considered time period.

Regarding the efficiency scores levels observed in the last year of the 

time period, 2013, we compare benchmarks with inefficient countries, us-

ing similar number of units in each group, i.e., benchmarks are Denmark, 

Austria, Netherlands, United Kingdom, Sweden and Germany and inef-

ficient countries under analysis are Bulgaria, Czech Republic, Estonia, 

Latvia, Poland and Romania. Figure 1 shows that inefficient countries 

have about 55% of the GDP per capita observed in the benchmarks, but 

the same reduction percentage is not observed on the resources: labor 

is similar for the two groups, but the inefficient countries require more 

percentage in terms of energy and capital, per capita, to produce GDP.
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Table 3: Bias-corrected efficiency scores across countries and time span.

Year Average

2009 2010 2011 2012 2013

Austria 87% 90% 95% 97% 98% 93%

Belgium 83% 89% 90% 92% 92% 89%

Bulgaria 45% 49% 52% 53% 56% 51%

Cyprus 75% 78% 84% 91% 94% 84%

Czech Republic 62% 62% 64% 66% 68% 64%

Germany 88% 90% 92% 93% 95% 92%

Denmark 89% 96% 95% 96% 96% 94%

Estonia 59% 64% 61% 58% 59% 60%

Greece 80% 84% 86% 90% 1  85%

Spain 83% 84% 86% 90% 93% 87%

Finland 82% 85% 88% 88% 87% 86%

France 80% 82% 85% 86% 87% 84%

Croatia 63% 69% 71% 74% 77% 71%

Hungary 63% 66% 71% 73% 74% 69%

Italy 82% 83% 84% 89% 91% 86%

Lithuania 67% 74% 74% 80% 80% 75%

Latvia 61% 65% 68% 68% 71% 67%

Malta 85% 82% 91% 91% 95% 89%

Netherlands 90% 92% 95% 96% 97% 94%

Poland 59% 62% 66% 70% 72% 66%

Portugal 74% 79% 82% 88% 89% 82%

Romania 59% 59% 60% 65% 73% 63%

Sweden 86% 92% 94% 97% 98% 93%

Slovenia 66% 71% 75% 77% 78% 73%

Slovakia 65% 68% 66% 72% 74% 69%

United Kingdom 94% 94% 95% 95% 98% 95%

                        1Data is not available.

Figure 1: Benchmarks and inefficient countries comparison in 2013.

In order to investigate the implementation of the energy policy, con-

cerning the attainment of 20-20-20 targets, imposed to EU countries, the 
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following analysis explores the energy efficiency associated with economic 

efficiency and greenhouse gas emissions in terms of their average rate 

in the study period for the two groups previously defined (benchmarks 

and inefficient countries). The greenhouse gas emissions are measured 

by the ratio between energy related greenhouse gas emissions (carbon 

dioxide, methane and nitrous oxide) and gross inland energy consumption. 

Considering the results obtained, presented in Figure 2, it is possible to 

conclude that benchmarks have developed a higher effort in reducing 

greenhouse gases emissions and have decreased the amount of energy 

used to produce one unit of economic activity (energy used per unit of 

GDP). Thus, the DEA model reflects in great extent the energy efficiency 

promoted by European energy policy.

Regarding the other target, the penetration of renewables energies 

in the total energy consumption, based on the results for the latest year 

under analysis (2013 year), it is observed that both groups have devel

oped similar efforts in increasing the renewable energy share of the 

total energy consumption (Figure 3). Specifically, there are found good 

and bad performers concerning the exploitation of renewable energy in 

both groups. 

Figure 2: Comparison of the average rate of Energy efficiency 
and greenhouse gas emissions for benchmarks and inefficient countries 

from 2009 till 2013.
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Figure 3: Renewable energy share for benchmarks 
and inefficient countries, in 2013.

Further, we explore the relationship between the targets regarding 

renewable energy share and the greenhouse gas emissions on the 

efficiency levels of European countries. This analysis also includes the 

electricity prices charged to final consumers measured by €/kWh. In 

some cases, because of financial constraints imposed by high energy 

prices, consumers may decrease their energy consumption through a 

reduction in their energy services. Such reductions do not necessarily 

result in increased overall energy efficiency of the economy. Nevertheless, 

energy prices assess an output of the energy system observed in each 

economy. 

This evaluation is performed using truncated regression with bootstrap

ping (Simar, Wilson, 2007), formulated according to (2). The model uses 

the bias-corrected efficiency for country i, in year t, as the dependent 

variable, and as regressors variables related to amount of renewable ener-

gy used, the greenhouse gas emissions and electricity prices observed in 

each country. Due to the use of a panel data truncated model, the year 

is also used as dummy variable to control the time effect (the reference 

level is 2009 year).
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Table 4: Truncated regression analysis results.

Variable Coefficient Std. Err. p-value

Year 2010 0.040 0.045 0.379

Year 2011 0.072 0.048 0.130

Year 2012 0.101 0.052 0.054

Year 2013 0.125 0.055 0.022

Greenhouse gas 
emissions

-0.007 0.003 0.012

Electricity prices 0.093 0.342 0.786

Renewable energy 
usage

0.094 0.035 0.007

Constant 1.327 0.241 0.000

Table 4 summarizes the results from the panel data truncated model 

in terms of coefficients, standard errors and p-values. The total number 

of observations was 129. The truncated regression model is statistically 

significant (χ2 Test with p-value equal to 0.0008), with a pseudo R2 equal 

to 0.17. From the obtained results, it is possible to confirm that countries 

increased significantly the efficiency level from 2012 (at 10% level of sig-

nificance). Apparently, the electricity prices increase with the efficiency 

level, although this effect is not significant. It is observed a negative and 

significant coefficient for the greenhouse gas emissions, meaning that the 

most efficient countries have lower levels of greenhouse gas emissions. The 

opposite occurs concerning the amount of renewable energy used which 

has a positive and significant impact on the efficiency of the economies. 

The most efficient countries use higher levels of renewable energy. Thus, 

it is possible to increase the share of renewable energy among total energy 

supply without deteriorating the technical efficiency of the economies, 

which is in agreement with the findings by Chien and Hu (2007).

6. Conclusions

This study proposes a DEA framework to assess the technical efficien-

cy of 26 European countries from 2009 till 2013. In order to fulfil some 

gaps existing in the literature, a panel data truncated regression is used 
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to explore the impact of the usage of renewable energy, the greenhouse 

gas emissions and the electricity prices on the efficiency estimates. This 

analysis is performed through the suitable bootstrap framework (Simar, 

Wilson, 1998; 2007) to obtain statistical inferences on efficiency estimates 

derived from DEA models. 

It is possible to conclude that since 2009 the bias-corrected efficiency 

of the economies increased approximately 13%, on average, which is a 

relevant improvement. Three groups were identified taking into account 

the bias-corrected efficiency. The benchmarks are Denmark, Austria, 

Netherlands and United Kingdom, Sweden and Germany which have 

the bias-corrected efficiency equal or higher than 95%. The medium 

performers are Belgium, Cyprus, Spain, France, Italy, Finland, Malta and 

Portugal, presenting an efficiency ranging from 82% to 89%. The inefficient 

countries are Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Poland, 

Romania, Slovakia, Croatia, Lithuania and Slovenia with an efficiency 

ranging from 51% to 75%.

Comparing the benchmarks with the lowest inefficient countries, by 

using similar number of units in each group, we investigate the imple-

mentation of the energy policy, concerning the attainment of 20-20-20 

targets, imposed to EU countries. It emerges clearly that benchmarks 

have developed a higher effort in reducing greenhouse gases emissions 

and have decreased the amount of energy used to produce one unit 

of economic output, since 2009. Therefore, the DEA model reflects in 

great extent the energy efficiency promoted by European energy policy. 

Regarding the penetration of renewables energies in the total energy 

consumption observed in 2013, it is observed that both groups have 

developed similar efforts in increasing the renewable energy share of 

the total energy consumption. Specifically, there are found good and 

bad performers concerning the exploitation of renewable energy in both 

groups. 

Regarding the relationship between the efficiency levels of the EU 

economies and the targets on renewable energy share and greenhouse 

gas emissions, it is observed that the most efficient countries have lower 

levels of greenhouse gas emissions and higher renewable energy shares. 
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Concerning the effect of electricity prices on the efficiency estimates, 

results are not significant. 

Based on the results achieved, we can conclude that the efforts regard

ing the energy policies developed in each country to follow 20-20-20 

targets, have not threatened the improvement of its technical efficiency.

In future developments, we propose to extend the methodology to 

incorporate other countries, to assess their performance concerning the 

sustainable and environmentally friendlier development. Other perspec-

tive can be to model other factors than can affect the energy efficiency 

of the economies.
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