

IDADES QUÍMICAS U-TH-PB DE MONAZITAS DE PLACERES MARINHOS DE BUENA (LITORAL NORTE DO RIO DE JANEIRO, BRASIL) POR MICROSSONDA ELETRÔNICA: IMPLICAÇÕES GEOLÓGICAS

ELECTRON MICROPROBE U-TH-PB CHEMICAL DATING OF MONAZITES FROM MARINE PLACERS OF BUENA (RIO DE JANEIRO NORTHERN COAST, BRAZIL):

GEOLOGICAL IMPLICATIONS

E. K. Oliveira1 & A. O. Chaves2

Resumo – Dados analíticos U-Th-Pb obtidos em microssonda eletrônica permitiram calcular idades químicas (não isotópicas) em grãos composicionalmente homogêneos e heterogêneos de monazita de placeres marinhos de Buena (litoral norte do Estado do Rio de Janeiro, Brasil), utilizando-se os softwares EPMA *dating* e ISOPLOT. As observações aqui apresentadas estão baseadas na premissa de que não existe ²⁰⁴Pb (não radiogênico) e que não houve interferência do ítrio nas raias de chumbo nos grãos de monazitas analisados. Embora os dados obtidos sejam ainda preliminares, ao se comparar as idades médias calculadas com as informações do mapa da compartimentação tectônica da região sudeste brasileira levantaram-se as seguintes hipóteses: a) proveniência de um dos grãos com 950 Ma a partir do Domínio Cambuci (CA), b) proveniência dos grãos com idade entre 800 e 840 Ma a partir de litotipos da *Klippe* de Italva (IT) e c) proveniência dos grãos com idades entre 765 e 780 Ma a partir de rochas do Arco Rio Negro.

Palavras-chave – Monazita; Placeres marinhos; Rio de Janeiro; Idades químicas U-Th-Pb; Microssonda eletrônica; Proveniência mineral

Abstract – Analysis of U-Th-Pb carried out by using an electron microprobe allowed to calculate chemical ages (non isotopic) of compositionally homogeneous and heterogeneous grains of monazite from marine placers of Buena (north coast of State of Rio de Janeiro, Brazil), supported on EPMA dating and ISOPLOT softwares. The observations presented here are

¹ Centro de Desenvolv. da Tecnologia Nuclear – CDTN/CNEN, Belo Horizonte, Brasil; eko@cdtn.br.

² Dept. Geologia, Univ. Federal de Minas Gerais – UFMG, Belo Horizonte, Brasil; alochaves@yahoo.com.br.

330

based on the assumption that there is no ²⁰⁴Pb (non radiogenic) in the monazite grains and no interference of yttrium on the lead lines of such grains. Although data obtained are still preliminary, comparing mean ages with information from the tectonic map of southeast Brazil, some hypothesis arise: a) provenance of one 950Ma grain from Cambuci Domain, b) provenance of 800-840 Ma grains from lithologies of the Italva Klippe, and c) provenance of 765-780 Ma grains from rocks of the Rio Negro Arc.

Keywords – Monazite; Marine placers; Rio de Janeiro; U-Th-Pb chemical ages; Electron microprobe; Mineral provenance

1 – Introdução

A monazita, um fosfato rico em elementos de terras raras, é uma fase mineral acessória, comumente disseminada em diversos tipos litológicos (ígneos, metamórficos e sedimentares). Uma vez que este mineral contém quantidades significativas de Th e U, além de incorporar pouco ou nenhum Pb comum durante sua cristalização (PARRISH, 1990), a quantificação precisa por microssonda eletrônica desses elementos actinídeos e do Pb radiogênico deles derivado pode ser usada para obter informações cronológicas (MONTEL et al., 1996; WILLIAMS & JERCINOVIC, 2002).

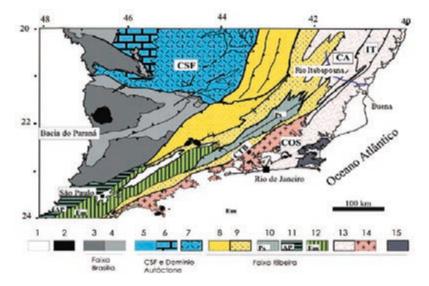
As transformações ocorridas ao longo da história geológica de uma rocha podem ficar registradas no zoneamento composicional dos seus minerais. Este zoneamento é uma das feições típicas encontradas em cristais de monazita (WILLIAMS *et al.*, 2007), percebido nas imagens de elétrons retroespalhados obtidas através da microssonda.

O objetivo deste trabalho é determinar, com o apoio da microssonda eletrônica e sua elevada resolução analítica espacial, as idades U-Th-Pb dos grãos quimicamente homogêneos (monodomínio) e heterogêneos (subdomínios) de monazita dos placeres marinhos de Buena (Rio de Janeiro, Brasil), de modo a se caracterizar a proveniência (possíveis áreas fontes) desses grãos e os eventos geológicos guardados por este mineral.

2 - Enquadramento geológico

A região de Buena, área onde as monazitas foram extraídas, está localizada na porção norte do Estado do Rio de Janeiro (Brasil), geologicamente pertencente à Província Tectônica Mantiqueira. As unidades litológicas da região noroeste do Estado do Rio de Janeiro estão situadas no segmento setentrional da Faixa Ribeira (Fig. 1).

A compartimentação tectônica da Faixa Ribeira, estabelecida no seu setor central, compreende quatro terrenos tectono-estratigráficos: Ocidental, Oriental, Paraíba do Sul/Embú e Cabo Frio. Os dois primeiros terrenos são separados por uma zona de cisalhamento complexamente redobrada (Limite Tectônico Central – LTC), com mergulhos subverticais a moderados para NW na porção centro-sul fluminense, e mergulhos para SE na porção noroeste fluminense e sul capixaba. O limite basal dos terrenos Cabo Frio e Paraíba do Sul/Embú está representado por uma zona de cisalhamento de baixo ângulo, com mergulhos para SE e NW. Os três primeiros terrenos foram amalgamados entre *ca.* 600 e 570 Ma, enquanto que Terreno Cabo Frio foi acrescionado ao final da colagem orogênica, em *ca.*


530-510 Ma. Estes terrenos representariam paleoplacas convergentes durante a formação do supercontinente Gondwana na transição Neoproterozóico/Cambriano. O Terreno Ocidental corresponderia à paleoplaca inferior (Placa Sanfranciscana), e o Terreno Oriental à placa superior, na qual se instalou o arco magmático responsável pela colisão Arco/Continente. Para leste, por trás do Terreno Oriental, o fechamento do espaço back-arc resultou na colisão com a paleoplaca do Terreno Cabo Frio. O Terreno Ocidental é representado pelo Domínio Tectônico Juiz de Fora, que integra rochas paleoproterozoicas do Complexo Juiz de Fora e uma sequência metassedimentar neoproterozoica conhecida como Megassegüência Andrelândia. O Terreno Paraíba do Sul aflora como uma klippe sinformal complexamente dobrada sobre o Terreno Ocidental. É constituído por ortognaisses paleoproterozoicos do Complexo Quirino e por um conjunto metassedimentar rico em intercalações de mármores dolomíticos e de idade ainda incerta, denominado de Complexo Paraíba do Sul. O Terreno Oriental, que contem as rochas geradas em ambientes de arco magmático e metassedimentos neoproterozoicos, foi subdividido na região noroeste fluminense em três domínios estruturais distintos: a) o Domínio Cambuci, em posição basal, compreende uma sequência metavulcano-sedimentar com lentes de mármore e ortognaisses calcioalcalinos com ambiência tectônica de arco magmático; b) o Domínio Costeiro é constituído por metassedimentos pelíticos em fácies granulito a anfibolito alto, com intercalações de quartzitos impuros intrudidos por ortognaisses e metagabros do Arco Magmático Rio Negro (ca. 790 a 620 Ma); c) a Klippe de Italva aflora sobre o Domínio Costeiro e compreende um conjunto metavulcanossedimentar com mármores calcíticos, anfibolitos (ca. 840 Ma) e paragnaisses com provável contribuição vulcânica. O Terreno Cabo Frio não aflora na região noroeste fluminense, sendo limitado por uma falha rúptil de direção NWW-SEE (TUPINAMBÁ et al., 2007).

A área dos placeres, na região de Buena, caracteriza-se pela presença de corpos arenosos, marinhos, classificados mais especificamente como cordões litorâneos ou cristas praiais (SUGUIO, 1998) paralelos à linha de praia, ora afastando-se, ora aproximando-se da linha de praia atual (MARTIM *et al.*, 1997). Estes cordões abrigam minerais pesados, dentre os quais encontram-se os grãos de monazita deste estudo. A região de Buena encontra-se próxima da foz do Rio Itabapoana, rio que atravessa as litologias pertencentes ao Domínio Cambuci (CA) e *Klippe* Italva (IT).

3 - Metodologia

Os grãos de monazita aqui investigados foram coletados em um concentrado final proveniente da região de Buena, em jazidas de placeres marinhos explotadas pela INB (Indústrias Nucleares do Brasil). Esses grãos foram montados em lâminas delgadas polidas e seções polidas que possibilitaram as microanálises, com determinações quantitativas simultâneas de Th, U e Pb (total), executadas em microssonda eletrônica (marca JEOL – modelo JXA-8900 – instalada na Universidade Federal de Minas Gerais), através do método de espectrometria por dispersão de comprimento de onda (WDS).

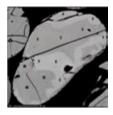
Para executar as microanálises dos grãos de monazita, conforme o procedimento de VLACH (2010), foram estabelecidas as condições instrumentais de 300nA de intensidade da corrente de feixe, 15kV de tensão de aceleração e 1 μ m para o diâmetro do feixe. Os padrões analíticos utilizados foram UO $_2$ (U), ThSiO $_4$ (Th) e PbCrO $_4$ (Pb).

Legenda: 1 – Coberturas Fanerozóicas; 2 – Rochas Alcalinas do K/Eoceno; 3 a 4: Faixa Brasília: 3 – Domínio Externo, 4 – Domínio Interno; 5 a 7: Craton do São Francisco e Domínio autóctone: 5 – Megasseqüência Andrelândia autóctone, 6 – Supergrupo Bambuí, 7 – Embasamento cratônico; 8 a 15: terrenos da Faixa Ribeira: 8 – Terreno Ocidental/Domínio Andrelândia, 9 – Terreno Ocidental/Domínio Juiz de Fora, 10 – Terreno Paraíba do Sul, 11 – Terreno Apiaí, 12 – Terreno Embú, 13 – Terreno Oriental: CA – Domínio Cambuci, IT – Klippe Italva, COS – Domínio Costeiro, 14 – Terreno Oriental/Arco magmático Rio Negro, 15 – Terreno Cabo Frio.

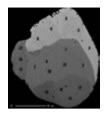
Fig. 1– Mapa da compartimentação tectônica da região sudeste brasileira (TUPINAMBÁ et al, 2007).

4 - Resultados

Como relação aos aspectos macroscópicos, a monazita apresenta grãos arredondados, turvos, cor amarelo claro, exibindo marcas na superfície provavelmente devidas ao mecanismo de abrasão das ondas do oceano.


A composição química de 12 dos grãos de monazita, analisados pela microssonda eletrônica (tabela 1), incluíram valores de U-Th-Pb, que serviram de base para os cálculos das idades químicas, utilizando o software EPMA *dating* (POMMIER *et al.*, 2004) e também para as idades por média ponderada calculadas pelo software ISOPLOT (LUDWIG, 2003) com intervalo de confiança de 95%. As idades químicas U-Th-Pb calculadas encontram-se na tabela 2.

A maioria dos grãos analisados através da microssonda eletrônica exibe uma distribuição homogênea do tom de cinza, enquanto dois grãos (G6 e SP-G1) apresentam tons de cinza contrastantes formando subdomínios heterogêneos e irregulares (Fig. 2). Os dois únicos grãos heterogêneos G6 e SP-G1 exibem a mesma idade média correspondendo a 779±14 Ma.


Considerando grãos homogêneos e heterogêneos, a distribuição de suas idades médias abrange, preferencialmente, dois intervalos: 765 a 779 Ma (5 grãos) e 801 a 839 Ma (6 grãos). Um único grão G10 (949±52 Ma) demonstrou uma idade mais elevada que todos os demais.

b) G6 – grão heterogêneo

c) SP-G1 - grão heterogêneo

Fig. 2 – Imagens por elétrons retroespalhados destacam os tons de cinza. (a) Interior de um grão homogêneo (monodomínio). (b e c) Grãos heterogêneos (com subdomínios composicionais).

As fraturas apresentadas pelos grãos em (a) e (b) não são originais, mas produzidas pelo processo de polimento dos grãos necessário para as microanálises.

5 – Discussões e conclusões

A variação das idades médias nos grãos de monazita investigados abrange um intervalo bastante amplo (765 \pm 32 Ma até 949 \pm 52 Ma), podendo indicar proveniências bastante diversas para esses grãos.

Quando as idades médias calculadas nessas análises são comparadas às informações do mapa da compartimentação tectônica da região sudeste brasileira (Fig. 1), levantam-se as seguintes hipóteses: a) proveniência do grão G10 (950 Ma) a partir do Domínio Cambuci (CA), que corresponde à porção basal do Terreno Oriental da Faixa Ribeira, b) proveniência dos grãos com idade entre 800 e 840 Ma a partir de litotipos da *Klippe* de Italva (IT) e c) proveniência dos grãos com idades entre 765 e 780 Ma a partir de rochas do Arco Rio Negro, ainda que atualmente não drenado pelo Rio Itabapoana, mas drenado por outros rios próximos a Buena.

Nos grãos heterogêneos G6 e SP-G1, provavelmente também de origem a partir do Arco Rio Negro, conforme as áreas onde existe uma distribuição irregular de subdomínios com diferentes tons de cinza (claro, médio e escuro, Fig. 2), observam-se diferentes idades médias, apesar de ambos os grãos exibirem, no geral, a mesma idade média (779±14 Ma). Os subdomínios cinza claro, mais comuns nas bordas dos grãos G6 e SP-G1, apresentam idade menor (G6 = 771 ± 27 Ma; SP-G1 = 777 ±n 25 Ma) em relação aos subdomínios cinza médio que ocorrem nas porções centrais dos grãos (G6 = 782 ± 16 Ma; SP-G1 = 782 ± 25 Ma). O subdomínio cinza escuro, que ocorre apenas nas bordas do grão SP-G1, apresenta uma idade ainda mais nova que a do subdomínio cinza claro, também de borda neste grão (763 ± 25 Ma). Estas observações sugerem que o subdomínio interno cinza médio guarde o evento inicial de cristalização destas monazitas heterogêneas por volta de 782 Ma, enquanto que os subdomínios externos cinza claro e escuro guardem o evento final da cristalização e possivelmente um evento de recristalização, cerca, respetivamente, 10Ma e 20Ma posteriores à cristalização inicial. O teor incorporado de ThO₂ foi menor no início da cristalização da monazita SP-G1 (7,8%, no subdomínio cinza médio), maior na fase final de cristalização (11,1% no subdomínios cinza claro) e ainda menor (7,31% no escuro) numa possível recristalização tardia.

Cabe finalmente destacar que, caso haja ²⁰⁴Pb (não radiogênico) ou tenha ocorrido possíveis interferências do ítrio nas raias de chumbo dos grãos de monazitas analisados,

as idades, preliminarmente obtidas, estariam superestimadas e deveriam ser mais jovens. Portanto, análises isotópicas U-Pb por LA-ICP-MS atualmente em curso ajudarão na definição das idades dos respectivos grãos e das suas proveniências geológicas.

Tabela 1 – Composições químicas das monazitas de Buena

Grão/	1102	6.0	6:02	TLO	1 202	VaOa	DI O	C 202	D2O5	D 202	N. 12.02	c 202	C 1202	D 202	T 1
Spot	UO2	CaO	SiO2		La2O3	Y2O3	РЬО	Ce2O3	P2O5				Gd2O3	•	
G1.2	0,06	0,55	1,41	9,24	16,78	0,13	0,30	28,97	24,24	2,84	10,90	1,21	0,55	0,18	97,36
G1.3	0,14	0,56	1,39	9,66	16,38	0,08	0,33	30,09	25,30	3,08	9,49	1,11	0,69	0,21	98,48
G1.4	0,13	0,61	1,23	9,48	16,52	0,08	0,33	29,36	24,61	2,93	10,25	1,15	0,68	0,25	97,61
G2.2	0,15	1,07	0,22	5,87	14,18	0,06	0,23	30,78	29,47	3,12	12,68	2,27	1,43	0,24	101,76
G2.3	0,23	0,99	0,31	5,85	14,32	0,05	0,22	29,98	27,26	3,06	12,15	2,34	1,49	0,31	98,56
G2.4	0,26	0,99	0,22	5,74	14,64	0,04	0,22	30,29	28,15	3,25	11,72	2,29	1,45	0,36	99,61
G2.5	0,10	1,02	0,28	5,73	13,93	0,07	0,22	31,45	28,30	3,25	12,56	2,26	1,46	0,28	100,90
G2.6	0,26	1,01	0,28	5,77	14,14	0,11	0,22	32,13	28,93	3,09	12,11	2,29	1,47	0,22	102,01
G3.2	0,03	1,08	0,18	5,88	14,45	0,32	0,23	28,93	30,00	3,18	10,86	2,07	1,22	0,46	98,87
G3.3	0,10	1,09	0,23	6,32	14,39	0,21	0,22	27,86	28,89	3,08	11,62	1,83	1,11	0,32	97,27
G3.4	0,13	1,17	0,20	6,03	14,19	0,22	0,22	28,87	28,59	3,08	11,69	1,94	1,13	0,33	97,77
G4.3	0,07	0,90	0,23	4,73	15,52	0,14	0,18	30,61	28,93	3,17	10,80	1,99	1,27	0,38	98,92
G4.4	0,25	0,84	0,23	4,86	15,10	0,08	0,20	30,48	27,24	3,19	10,96	2,12	1,30	0,41	97,24
G4.5	0,20	0,93	0,29	5,77	14,73	0,01	0,22	30,75	27,90	3,12	10,84	2,03	0,91	0,06	97,76
G4.6	0,00	0,68	0,64	5,93	15,88	0,05	0,21	31,27	26,39	3,10	11,48	1,40	0,61	0,03	97,66
G4.7	0,11	0,73	0,42	5,67	15,64	0,00	0,19	31,01	27,59	3,55	11,25	1,80	0,63	0,17	98,77
G4.8	0,28	0,89	0,23	4,86	15,20	0,10	0,20	29,88	28,75	3,46	11,04	2,15	1,44	0,34	98,81
G5.2	0,00	0,55	0,97	7,03	19,97	0,05	0,25	31,98	28,55	2,91	8,70	0,97	0,44	0,16	102,52
G5.3	0,09	0,58	1,01	7,51	18,70	0,02	0,26	31,78	28,54	3,13	9,22	1,08	0,36	0,07	102,34
G5.4	0,10	0,62	0,91	7,29	18,31	0,03	0,24	32,29	28,46	2,97	9,20	1,17	0,47	0,11	102,17
G5.5	0,11	0,52	1,44	8,26	19,97	0,02	0,27	32,06	27,32	2,48	8,65	0,97	0,41	0,06	102,54
G6.1	0,00	0,94	0,91	8,58	12,75	0,07	0,30	30,22	27,95	3,54	13,44	2,04	1,01	0,24	101,97
G6.2	0,09	0,97	1,09	9,48	12,54	0,05	0,33	30,40	27,48	3,33	13,26	2,17	0,97	0,18	102,34
G6.3	0,10	1,50	0,37	7,97	11,01	0,12	0,28	28,59	29,52	3,40	13,67	2,56	1,41	0,39	100,88
G6.4	0,10	1,52	0,45	9,14	11,14	0,15	0,31	27,16	29,79	3,35	13,74	2,65	1,53	0,41	101,43
G6.5	0,11	1,49	0,40	8,50	11,09	0,13	0,28	27,77	30,30	3,43	13,36	2,59	1,40	0,28	101,13
G6.6	0,10	0,98	1,17	9,74	12,41	0,05	0,32	28,35	28,34	3,31	12,81	2,01	0,96	0,22	100,77
G6.7	0,10	0,94	1,19	9,73	12,33	0,07	0,32	28,53	28,22	3,43	12,56	2,00	0,95	0,24	100,62
G6.9	0,08	1,20	0,31	6,66	12,06	0,14	0,23	30,03	29,39	3,42	14,18	2,57	1,33	0,44	102,04
G6.10	0,09	1,41	0,35	7,20	11,95	0,18	0,24	30,26	29,42	3,51	14,06	2,51	1,40	0,35	102,92
G6.11	0,06	1,68	0,45	8,21	11,46	0,22	0,29	29,49	28,77	3,53	13,80	2,47	1,59	0,32	102,33
G6.12	0,10	1,61	0,47	8,50	12,04	0,20	0,29	29,76	28,25	3,47	13,94	2,57	1,44	0,32	102,95
G6.13	0,33	1,45	0,60	9,93	13,93	0,00	0,38	30,88	27,25	3,51	11,75	2,02	0,61	0,12	102,75
G6.14	0,44	1,37	0,64	9,20	13,86	0,00	0,37	31,89	26,96	3,43	11,53	1,87	0,61	0,05	102,19
G6.15	0,46	1,41	0,55	9,12	13,67	0,00	0,36	31,50	26,84	3,36	12,46	1,89	0,65	0,16	102,42
G6.16	0,51	1,40	0,60	9,52	13,98	0,03	0,37	31,52	25,84	3,19	12,48	1,94	0,68	0,05	102,12
G6.17	0,51	1,36	0,56	9,19	13,56	0,01	0,37	31,61	26,50	3,23	12,45	1,81	0,69	0,12	101,96
G6.18	0,50	1,53	0,60	9,83	13,72	0,01	0,39	30,99	26,39	3,40	12,92	1,86	0,70	0,03	102,87
G7.7	0,45	1,43	0,59	8,98	13,61	0,00	0,36	30,23	27,87	3,38	12,37	1,74	0,73	0,22	101,94
G7.8	0,31	1,31	0,53	8,96	14,12	0,01	0,36	31,32	26,71	3,02	12,05	1,78	0,65	0,07	101,19
G7.9	0,28	1,43	0,54	8,93	12,80	0,00	0,37	29,78	27,28	3,02	11,76	1,82	0,54	0,09	98,64
G8.1	0,00	0,36	1,23	6,52	16,64	0,30	0,24	32,80	28,47	2,99	9,90	1,32	0,63	0,29	101,70
G8.2	0,09	0,39	1,14	6,92	17,56	0,13	0,25	34,21	28,40	2,65	10,04	1,01	0,66	0,30	103,75
G8.3	0,10	0,40	1,14	6,91	17,25	0,13	0,24	34,43	28,58	2,88	10,02	1,24	0,44	0,19	103,94

G8.4	0,09	0,45	1,14	7,05	17,77	0,11	0,25	34,26	28,25	3,15	10,10	1,14	0,51	0,12	104,40
G9.1	0,03	0,59	1,15	7,77	14,41	0,36	0,29	29,84	26,82	2,86	10,97	1,55	1,05	0,37	98,07
G9.2	0,18	0,58	1,08	7,53	15,08	0,27	0,27	30,29	26,97	3,09	10,94	1,68	1,05	0,35	99,35
G9.3	0,18	0,52	1,10	7,63	14,58	0,29	0,28	30,40	27,02	3,02	10,58	1,80	1,03	0,46	98,88
G9.4	0,18	0,56	1,16	7,74	14,71	0,33	0,29	29,77	27,16	3,14	10,46	1,72	1,10	0,37	98,68
G9.5	0,18	0,58	1,19	7,64	14,34	0,33	0,28	29,91	26,73	2,80	10,47	1,76	1,21	0,56	97,98
G10.1	0,32	0,41	0,42	3,14	14,02	0,60	0,17	29,83	29,34	3,09	12,21	2,57	1,74	0,90	98,76
G10.2	0,49	0,41	0,50	3,38	12,92	0,77	0,21	29,62	30,24	3,29	12,97	2,57	1,98	0,94	100,29
G10.3	0,34	0,39	0,44	2,66	14,39	0,67	0,15	31,51	30,39	3,22	12,36	2,39	1,76	0,89	101,54
G10.4	0,32	0,39	0,42	2,37	14,44	0,70	0,14	31,42	30,48	3,15	13,01	2,50	1,73	0,86	101,94
G10.5	0,33	0,42	0,43	2,44	14,02	0,66	0,15	30,99	30,04	3,32	12,64	2,52	1,62	0,86	100,42
G11.2	0,12	0,80	0,31	5,44	14,58	0,02	0,19	32,37	25,48	3,23	12,38	1,82	0,67	0,07	97,47
G11.3	0,11	0,78	0,31	5,39	14,53	0,01	0,19	32,03	26,15	3,42	11,64	1,88	0,61	0,09	97,11
G11.4	0,12	0,69	0,28	5,04	14,72	0,00	0,18	31,97	27,77	3,31	11,41	1,73	0,58	0,06	97,84
SP-G1.2	0,20	0,58	1,83	10,87	17,45	0,07	0,39	30,43	26,32	2,70	8,39	0,89	0,35	0,00	100,46
SP-G1.3	0,21	0,63	1,90	11,34	16,22	0,08	0,41	31,07	26,09	2,87	8,79	0,98	0,32	0,11	101,03
SP-G1.4	0,22	0,63	1,80	11,07	17,35	0,08	0,38	30,96	26,25	2,56	8,88	0,99	0,42	0,11	101,68
SP-G1.5	0,21	0,60	1,85	11,29	17,32	0,05	0,40	30,52	26,45	2,62	8,61	0,96	0,31	0,19	101,38
SP-G1.6	0,14	0,64	1,03	7,83	17,70	0,06	0,29	33,28	27,78	2,77	9,34	0,97	0,39	0,07	102,27
SP-G1.7	0,14	0,77	1,05	7,76	17,55	0,05	0,27	32,99	27,74	2,95	9,64	1,05	0,42	0,10	102,46
SP-G1.8	0,14	0,61	1,02	7,75	17,38	0,04	0,27	32,64	27,63	3,03	9,17	1,04	0,38	0,08	101,19
SP-G1.9	0,13	0,67	1,01	7,58	17,84	0,05	0,27	32,64	27,89	2,70	9,25	0,95	0,47	0,00	101,43
SP-G1.10	0,12	0,60	1,05	7,81	17,82	0,04	0,28	32,58	28,08	2,84	8,62	1,05	0,50	0,08	101,45
SP-G1.11	0,09	0,68	1,09	7,80	16,74	0,07	0,28	33,13	29,29	2,83	8,31	1,02	0,49	0,14	101,94
SP-G1.12	0,05	0,63	0,91	5,97	19,76	0,04	0,20	33,49	29,15	2,98	8,46	0,82	0,35	0,07	102,87
SP-G1.13	0,07	0,58	1,07	6,79	18,89	0,04	0,23	33,87	28,62	2,74	8,82	0,78	0,25	0,07	102,81
SP-G1.14	0,07	0,56	1,07	6,84	18,44	0,03	0,23	33,68	28,60	2,73	8,97	0,89	0,38	0,00	102,47
SP-G1.15	0,06	0,57	1,07	6,79	18,87	0,03	0,23	33,81	28,96	2,74	8,63	0,72	0,34	0,00	102,81
SP-G1.16	0,13	0,81	0,92	7,82	16,18	0,07	0,28	33,52	29,53	2,79	7,02	1,31	0,61	0,16	101,13
SP-G1.17	0,11	0,90	0,78	7,84	15,56	0,08	0,27	31,87	29,54	3,10	10,36	1,35	0,61	0,16	102,53
SP-G1.18	0,12	1,01	0,81	7,78	15,62	0,08	0,27	31,29	29,50	3,06	10,30	1,36	0,62	0,12	101,93

Tabela 2 – Idade U-Th-Pb em monazita, utilizando o software EPMA dating (Pommier *et al.*, 2004) Média ponderada calculada pelo software ISOPLOT (Ludwig, 2003) com intervalo de confiança de 95%

REF	Age Ma	Erro Age Ma	U ppm	Erro U ppm	Erro U %	Th ppm	Erro Th ppm	Erro Th %	Pb ppm	Erro Pb ppm	Erro Pb %	Domínio
G1.2	751	59	494	150	30	81219	1624	2	2813	150	5	-
G1.3	756	56	1199	150	13	84910	1698	2	3036	150	5	-
G1.4	786	57	1164	150	13	83301	1666	2	3101	150	5	-
		Mean =	765±32 [4	4.2%]. Wt	d by data	a-pt errs or	ly. MSW	D = 0.4	probabilit	y = 0.64		
G2.2	847	82	1278	150	12	51577	1032	2	2144	150	7	-
G2.3	785	77	2054	150	7	51427	1029	2	2070	150	7	-
G2.4	764	77	2301	150	7	50399	1008	2	2005	150	7	-
G2.5	841	85	908	150	17	50364	1007	2	2033	150	7	-
G2.6	783	77	2327	150	6	50724	1014	2	2070	150	7	-
		Mean = 8	801±35 [4	.3%]. Wt	d by data	-pt errs on	ly. MSW	D = 0.87,	probabili	ty = 0.48		
G3.2	878	88	247	150	61	51647	1033	2	2089	150	7	-
G3.3	783	78	899	150	17	55505	1110	2	2070	150	7	-
G3.4	791	80	1155	150	13	52956	1059	2	2033	150	7	-
Mean = 813 ± 130 [16%]. Wtd by data-pt errs only. MSWD = 1.5, probability = 0.21												

Tabela 2 – Continuação												
	Age	Erro	U	Erro	Erro	Th	Erro	Erro	Pb	Erro	Erro	
REF	Ma	Age	ppm	U	U	ppm	Th	Th	ppm	Pb	Pb	Domínio
G4.3	864	Ma 102	608	ppm 150	% 25	41594	ppm 832	% 2	1708	ppm 150	% 9	_
G4.4	823	88	2204	150	7	42701	854	2	1866	150	8	-
G4.5	786	79	1781	150	8	50724	1014	2	2014	150	7	-
G4.6	815	80	0	0	100	52122	1042	2	1922	150	8	-
G4.7 G4.8	731 821	83 87	987 2468	150 150	15 6	49863 42683	997 854	2	1754 1894	150 150	9 8	-
G 1.0	021					-pt errs on					O	
G5.2	830	70	0	0	100	61753	1235	2	2321	150	6	-
G5.3 G5.4	774 749	68 69	820 864	150 150	18 17	65998 64047	1320	2	2404 2265	150 150	6 7	-
G5.5	739	62	1005	150	15	72606	1281 1452	2	2534	150	6	-
	, , ,				d by data	a-pt errs or						
G6.1	811	60	0	0	100	75366	1507	2	2766	150	5	cz cl
G6.2 G6.3	782 777	58 65	829 873	150 150	18 17	83345 70040	1667 1401	2 2	3045 2562	150 150	5 6	cz cl cz md
G6.4	765	59	899	150	17	80287	1606	2	2878	150	5	cz md
G6.5	737	61	943	150	16	74698	1494	2	2590	150	6	cz md
G6.6	746	56	846	150	18	85630	1713	2	2980	150	5	cz cl
G6.7 G6.9	736 783	56 76	899 688	150 150	17 22	85534 58502	1711 1170	2	2943 2154	150 150	5 7	cz cl cz cl
G6.10	762	71	749	150	20	63247	1265	2	2265	150	7	cz md
G6.11	800	66	511	150	29	72176	1444	2	2674	150	6	cz md
G6.12	755	62	864	150	17	74663	1493	2	2646	150	6	cz md
G6.13 G6.14	811 805	53 53	2874 3861	150 150	5 4	87291 80823	1746 1616	2	3555 3416	150 150	4	cz md cz md
G6.15	789	53	4046	150	4	80129	1603	2	3342	150	4	cz md
G6.16	764	50	4487	150	3	83679	1674	2	3407	150	4	cz md
G6.17	796	52	4513	150	3	80762	1615	2	3453	150	4	cz md
G6.18	798	50 Mean -	4390 - 779+14 [150 1 8%] Wt	3 d by data	86412 i-pt errs on	1728 ly MSW/1	2 D = 0.77	3648	150 rv =0.73	4	cz md
G7.7	800	54	3958	150 Wt	4	78899	1578	2	3333	150	5	-
G7.8	842	57	2741	150	5	78714	1574	2	3351	150	4	-
G7.9	882	59	2424	150	6	78459	1569	2	3463	150	4	-
G8.1	869	75	= 839±100 0	[12%]. W	100	a-pt errs of 57280	niy. M5 w 1146	D = 2.1,	2256	y = 0.12 150	7	_
G8.2	799	74	793	150	19	60795	1216	2	2293	150	7	-
G8.3	765	73	873	150	17	60708	1214	2	2200	150	7	-
G8.4	784	72	820	150	18	61938	1239	2	2293	150	7	-
G9.1	858	71	300 = 803±/1	6.9%]. Wi	50 50	a-pt errs or 68256	1365	D = 1.5,	2692	y = 0.21 150	6	_
G9.2	777	66	1543	150	10	66191	1324	2	2506	150	6	-
G9.3	787	66	1560	150	10	67044	1341	2	2571	150	6	-
G9.4 G9.5	817 779	66 65	1596 1578	150 150	9 10	68002 67175	1360 1344	2	2711 2553	150 150	6 6	-
G).)	///					-pt errs on					U	-
G10.1	945	115	2847	150	5	27586	552	2	1597	150	9	-
G10.2	968	98	4311	150	3	29703	594	2	1949	150	8	-
G10.3 G10.4	919 947	125 137	2971 2830	150 150	5 5	23350 20845	467 417	2 2	1392 1309	150 150	11 11	-
G10.5	956	134	2891	150	5	21399	428	2	1355	150	11	-
						pt errs onl					_	
G11.2 G11.3	777	86 87	1040 961	150 150	14	47807	956	2 2	1801	150 150	8 9	-
G11.5 G11.4	751 766	91	1031	150	16 15	47394 44283	948 886	2	1717 1652	150	9	-
01111	, 00					pt errs onl						
SP-G1.2	784	51	1745	150	9	95561	1911	2	3593	150	4	cz cl
SP-G1.3	796	50 50	1878	150	8	99673	1993	2 2	3815	150	4	cz cl
SP-G1.4 SP-G1.5	749 779	50 50	1922 1834	150 150	8	97266 99252	1945 1985	2	3509 3713	150 150	4	cz cl cz cl
SP-G1.6	802	66	1234	150	12	68775	1375	2	2646	150	6	cz md
SP-G1.7	777	66	1199	150	13	68186	1364	2	2534	150	6	cz md
SP-G1.8	777	66 67	1269	150	12 14	68125 66569	1362	2	2544	150 150	6	cz md
SP-G1.9 SP-G1.10	783 782	67 66	1102 1075	150 150	14	68590	1331 1372	2	2488 2553	150	6	cz md cz md
SP-G1.11	808	68	776	150	19	68538	1371	2	2599	150	6	cz md
SP-G1.12	747	83	441	150	34	52429	1049	2	1819	150	8	cz md
SP-G1.13 SP-G1.14	757	74 72	582	150	26 24	59662	1193	2	2107	150	7	cz esc
SP-G1.14 SP-G1.15	744 757	73 75	635 494	150 150	24 30	60066 59653	1201 1193	2	2089 2098	150 150	7 7	cz esc cz esc
SP-G1.16	796	66	1128	150	13	68678	1374	2	2609	150	6	cz esc
SP-G1.17	768	66	996	150	15	68872	1377	2	2506	150	6	cz esc
SP-G1.18	757	66 Mean -	1058 . 779+14 [1	150 18%] W/t	14 d by data	68397 -pt errs on	1368 lv. MSW/I	2	2460	150 x = 0.97	6	cz esc
		1410411 =				– pt errs on = cinza mé				y = 0.7/		

Agradecimentos – Os autores expressam profunda gratidão pelos ensinamentos durante a convivência com o prof. Dr. José Marques Correia Neves (in memoriam) que foi o orientador inicial. Agradecemos Ao Dr. Luiz Garcia pelas microanálises.

Referências Bibliográficas

- INDÚSTRIAS NUCLEARES DO BRASIL (INB) Disponível em http://www.inb.gov.br/inb/WebForms/interna.aspx?secao_id=62 (consultado em 01.09.2011).
- LUDWIG, K. R. (2003) Isoplot/Ex 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, 4, 70 p.
- MARTIN, L., SUGUIO, K., DOMINGUEZ, J. M. L. & FLEXOR, J-M. (1997) Geologia do quaternário costeiro do litoral norte do Rio de Janeiro e do Espírito Santo/ Louis Martin. Belo Horizonte: CPRM, 112 p.
- MONTEL, J. M., FORET, S., VESCHAMBRE, M., NICOLLET, C., & PROVOST, A. (1996) Electron microprobe dating of monazite. *Chemical Geology*, 131, p. 37-53.
- PARRISH, R. R. (1990) U-Pb dating of monazite and its application to geological problems. *Canadian Journal of Earth Sciences*, 27, p. 1431-1450.
- POMMIER, A., COCHERIE, A. & LEGENDRE, O. (2004) EPMA Dating: age calculation from electron probe microanalyser measurements of U-Th-Pb. BRGM, Orleans, France, 9 p.
- SUGUIO, K. (1998) Dicionário de geologia sedimentar e áreas afins, Bertrand Brasil, 1222 p.
- TUPINAMBÁ, M., HEILBRON, M., DUARTE, B. P., NOGUEIRA, J. R., VALLADARES, C., ALMEIDA, J., SILVA, L. G. E., MEDEIROS, S. R., ALMEIDA, C. G., MIRANDA, A., RAGATKY, C. D., MENDES, J. & LUDKA, I. (2007) Geologia da Faixa Ribeira Setentrional: Estado da Arte e Conexões com a Faixa Araçuaí. Geonomos, 15, p. 67-79.
- VLACH, S. R. F. (2010) Th-U-Pb_T dating by the Electron Probe Microanalysis, Part I. Monazite: Analytical procedures and data treatment. *Geologia USP*. Série Científica, 10, p. 61-85.
- WILLIAMS, M. L. & JERCINOVIC, M. J. (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. *Journal of Structural Geology*, 24, p. 1013-1028.
- WILLIAMS, M. L., JERCINOVIC, M. J. & HETHERINGTON, C. J. (2007) Microprobe Monazite Geochronology: understanding geologic processes by integrating composition and chronology. *Annual Reviews of Earth and Planetary Sciences*, 35, p. 137-175.