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Ninety years have ellapsed since the Old Quantum Theory has emerged, and 

eighty three over the foundations of Modern Quantum Mechanics. Born in 

1901, Ruy Gustavo Couceiro da Costa soon became aware of the importance 

of Quantum Mechanics in Science, particularly in Chemistry. Such a vision 

has flurished ever since and its presence in the scientific realm is nowadays 

unquestionable: Physics, Chemistry, Biology, Astronomy, Engineering and even 

Philosophy, all such areas of knowledge reflect the importance of judgement 

in accordance with the quantum laws. This book is a result of a Symposium 

to honor the memory of Professsor Couceiro da Costa for his contribution to 

the development of Quantum Mechanics in Chemistry and Physics in Portugal.

A tribute to the memory of
Professor Couceiro da Costa



8. COMPUTAT IONAL PROTEOM IC S – FROM METHODOLOG I CAL

DEVELOPMENT S TO BIOLOG IC AL APP L I CA T ION S

Irina S. Moreira, Natercia F. Bras†, Alexandra T. P. Carvalho†, Nuno M. F. S. A.
Cerqueira†, Daniel F. Dourado† , Marta A. S. Perez†, Antonio J. M. Ribeiro†,

Sergio F. Sousa†, Pedro A. Fernandes, and Maria J. Ramos*

REQUIMTE/Departamento de Química, Faculdade de Ciências da Universidade
do Porto, Rua do Campo Alegre 687, 4169-007 Porto - Portugal

Proteomics, a chimera of proteins and genomics, involves the study of the
proteins expressed in a cell, organism, or tissue. Proteins are essential in all
aspects of life, and so the computational study of proteomics is becoming a
vital element in understanding the underlying concepts. In this review we
are going to address some of the challenges and latest developments focus-
ing in four different aspects that are thematic in our group: (a) Molecular
Dynamics Simulations; (b) Drug Design; (c) Enzymatic Mechanisms; and (d)
Benchmarking of DFT functionals.

8.1 Introduction

Proteomics, a chimera of proteins and genomics, was invented by Pro-

fessor Mark Wilkins in the early 1990s and involves the study of the proteins

expressed in a cell, organism, or tissue. This includes protein identification and

quantification, protein-protein interactions, protein complexes prediction, pro-

tein modifications and protein localization in the cell. As proteins are essential

for all life, proteomics is crucial in biomedical applications, and although more

recent, the computational study of proteomics is becoming a key element in this

biological field.

Computational proteomics involves the computational methods, algorithms,

databases and methodologies used to model protein structure, dynamics and
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†Equal participation.



function. In this review we are going to focus on four different aspects that are

thematic in our group, and range from methodological developments to their

biological application: (a) Molecular Dynamics Simulations; (b) Drug Design;

(c) enzymatic Mechanisms; and (d) Benchmarking of DFT functionals.

8.2 Classical Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations have become during the past

two decades, a particularly important discipline within the field of computational

biochemistry, allowing the computationally efficient evaluation of a variety of

properties in the study of biological molecules for which atomic and molecular

motion is vital.

Generically speaking, MD simulations follow the time evolution of a system

through the numerical integration of the equations of motion of the corres-

ponding particles. In particular, MD simulations are based on the application of

classical mechanics, with intra and inter-molecular interactions described by a

sum of different contributions described by mathematical formulations of simple

physics phenomena. The corresponding mathematical formulae and the accom-

panying parameters, which are typically fitted to reproduce experimental data or

high-level ab initio calculations, are normally described under the generic des-

ignation of force field. A variety of different force fields is presently available,

differing in features such as scope, accuracy and cost associated.

The range of application of MD simulations is remarkably wide and encom-

passes the study of phenomena such as protein and/or small molecule conform-

ational changes, molecular association and recognition, folding, ion transport,

etc. Over the last few years we have employed MD simulations in the study of

several biological systems of interest, often in combination with other computa-

tional methods. In this section, we highlight 5 particularly different applications

of this very powerful methodology, selected from our own work on biological

systems. These include our MD studies on the elusive metalloenzyme farne-

syltransferase (FTase), the medically critical HIV reverse transcriptase enzyme

(RT), and the economically appealing carbohydrate-binding modules (CBMs)
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from family 11.

8.2.1 Farnesyltransferase

Farnesyltransferase is a Zinc metalloenzyme that catalyses the addition of

farnesyl groups from farnesyl diphosphate (FPP) to protein cysteine residues

present in characteristic carboxyl terminal −CAAX motifs. In this motif C rep-

resents the cysteine residue that is farnesylated, A is an aliphatic amino acid, and

X represents the terminal amino acid residue [1]. Proteins substrates bearing a

CAAX motif include a number of biologically relevant protein targets, most not-

ably the Ras family of proteins known to be implicated in something like 30%

of all human cancers [2].

Performing MD simulations on FTase is particularly challenging, compared

with the typical enzymes that are comprised simply by standard amino acid

residues, because of the presence of a covalently bound Zinc atom with a metal

coordination sphere that changes during catalysis. Metal atoms, and the cor-

responding bonds, angles, dihedrals, charges, and van der Waals parameters

are normally absent in the typical biomolecular force fields such as AMBER,

CHARMM or OPLS. Their inclusion involves not only the parameterization of

the metal atom itself, but also of the directly interacting amino acid residues,

and naturally a subsequent process of validation against experimental data. We

have parameterized the three different Zn coordination spheres that are formed

during the catalytic mechanism of this enzyme using quantum calculations and

experimental data and have validated the new parameters against EXAFS and

X-Ray crystallographic information [3].

Following this process, we have performed comprehensive MD simulations

with the AMBER software package on the several intermediate states formed

during the catalytic mechanism of this enzyme, in an attempt to understand

the way this enzyme works at a molecular level, and taking into consideration

features such as the effect of the solvent and the dynamic effects arising from

the interaction of the enzyme, solvent and the substrate/product molecules [4,5].

Starting from extensive 10 ns MD simulations on the enzyme resting state, binary
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complex (FTase-FPP), ternary complex (FTase-FPP-CAAX substrate) and product

complex (FTase-Product), we have performed comparative analysis of the amino

acid flexibility along the FTase sequence, radial distribution functions of water

molecules around catalytically relevant atoms, statistic variations on key catalytic

distances, detailed analysis on the conformation and orientation adopted by the

substrate and product molecules in the presence of the enzyme, and hydrogen

bonding analysis on the most important molecular recognition sites.

These results provided very useful information for the subsequent modeling

of the catalytic mechanism of this enzyme, guiding and supporting the choice of

the models used from QM or QM/MM calculations, and of the several approx-

imations adopted.

8.2.2 Reverse Transcriptase

Reverse transcriptase (RT) is the human immunodeficiency virus (HIV) en-

zyme whose function is to copy the viral RNA into double-stranded DNA suitable

to be integrated in the host cell genome. Several combinations of different RT

inhibitors are currently used in antiretroviral therapy. Our study focused on

nucleoside reverse transcriptase inhibitors (NRTIs). These are substrate ana-

logues that compete for binding and incorporation into the nascent DNA chain.

However, because they lack a 3’OH, after they are incorporated they do not al-

low the addition of the next incoming nucleoside blocking DNA synthesis. It is

presently known that the long-term failure in the treatment of AIDS with the cur-

rently available NRTIs is related to the development of resistance by RT at the

binding or incorporation level, or subsequent to the nucleotide incorporation

(excision).

We have conducted a series of MD simulations of RT with different inhibit-

ors in explicit solvent in order to correlate the structural characteristics of the

inhibitors with the stage at which RT resistance emerges. To achieve a greater

insight on how RT discrimination gets established we compared incorporation of

a normal substrate (dNTP) with incorporation of two very similar inhibitors for

which resistance emerges by different mechanisms: phosphorylated zalcitabine,
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ddCTP, which is discriminated and phosphorylated stavudine, d4TTP, which is

mainly excised [6]. We found that the different resistance profiles arise from

the different conformations adopted by the inhibitors at the active site. d4TTP

adopts an ideal conformation for catalysis because it forms an ion-dipole in-

tramolecular interaction with the α-phosphate oxygen of the triphosphate, as

does the normal substrate. In ddCTP, the lack of this essential interaction res-

ults in a different, noncatalytic conformation [6]. To achieve a greater insight

on why RT excision occurs we conducted molecular dynamics simulations of

complexes of HIV-1 RT with the incorporated substrate and the antiretrovirals

AZT and d4T with and without pyrophosphate. For these two inhibitors res-

istance emerges via the excision mechanism, however they are very different

structurally: AZT was a bulky azide group at the 3’ position that could impose

steric hindrances to translocation and d4T only was an hydrogen at this posi-

tion [7]. We found that RT preferably excises these inhibitors over the substrate

as a consequence of a different pattern of hydrogen bridges they establish with

the N site after incorporation. In the complexes with normal nucleotides, the

fingers residues K65 and R72 establish hydrogen bonds mainly with the leaving

PPi. With the inhibitors, those same residues establish hydrogen bonds primar-

ily with the substituted nucleotides. Consequently, pyrophosphate is eliminated

before the opening of the fingers domain for the inhibitors, which allows ATP

binding, with subsequent excision and development of drug resistance [7]. Our

main conclusion was that although the lack of the 3’OH is the determinant that

makes NRTIs inhibitors, it seems that the enzyme is highly specialized in recog-

nizing structures with this group. This seems to be the cause for resistance to

NRTIs being so common.

8.3 Carbohydrate Binding-Modules (CBMs)

The conversion of plant cell wall polysaccharides into soluble sugars is one

of the most important reactions in nature. This process is of high economical

interest as the products obtained (such as glucose derivatives) are very useful

in food and pharmaceutical industries. They also have an enormous poten-
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tial for the bio-fuel industry, as ethanol can be directly obtained from glucose

monomers [7,8]. An efficient degradation of cellulose chains into soluble glucose

monomers can be achieved using chemical means or by certain microorganisms

such as Clostridium thermocellum (Ct). The latter method has become the most

attractive due to reasons of economy and efficiency [8]. These organisms pos-

sess a cluster of enzymes organized in a high-hierarchy multi-subunit complex

called cellulosome [9] The enzymes are generally modular proteins that contain

non-catalytic carbohydrate-binding modules (CBMs), which increase the activ-

ity of the catalytic module and are thus crucial for the efficient degradation of

polysaccharides [10].

Since the X-ray structure of CtCBM11 with a bound substrate is not avail-

able, we have used MD simulations with both CHARMM and AMBER force

fields [11,12], integrated with the recently developed MADAMM docking pro-

tocol [13], to determine the molecular recognition of glucose polymers by CBMs

from family 11. MD simulations demonstrate that the side chain conformations

of some tyrosine residues near the binding pocket (Tyr22, Tyr53, Tyr129 and

Tyr152) give rise to a steric obstacle, precluding the efficient binding of the lig-

ands. To overcome this limitation, a novel docking protocol that introduces a

certain degree of flexibility to these amino acids in standard docking processes

was used. Our results have shown that the binding interface of the CtCBM11 can

bind only one single polysaccharide chain, and we have used cellobiose, cel-

lotetraose, cellohexaose, celloctaose and cellotrideose as model substrates. We

propose a general mechanism for the interaction between CtCBM11 and cellu-

lose chains, in which four main charged amino acids (Asp99, Arg126, Asp128,

and Asp146) have a key role in the interaction with the cellulose chains. Another

feature is that a minimum of four glucose monomers in the polymer chains are

required for a strong interaction with the central binding site, with the remaining

units attached equidistantly to both sides of the CtCBM11 cavity. MD simulations

also indicate that the strongest hydrogen interactions occur with the hydroxyl

groups attached to C–2 and C–6 of central glucose units of the polymer chain,

which is in agreement with STD and line broadening NMR studies [11,12,14].
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Furthermore, our data have shown that the three aromatic tyrosine residues

(Tyr22, Tyr53, and Tyr129) at the CtCBM11 interface induce a certain distortion

in the glucose rings that was found to be important for guiding, reorientation and

packing of the polysaccharide chain to the charged region, providing important

insights into substrate binding by this important class of proteins. We also sug-

gest that these aromatic residues are crucial to detach the carbohydrate chain

from the solvent or other polysaccharide chains, by inducing a reorientation of

the hydrogen bonds [11,12].

Considering that the CtCBM11 is topologically similar and structurally homo-

logous to CBMs of families 4, 6, 15, 17, 22, 27 and 29, we suggest that similar

molecular determinants drive the binding and recognition of polysaccharides

to these CBMs. The knowledge of the interactions that occur at the molecular

level between several polysaccharides and the CBMs can be used to improve

the efficiency of the linked enzymes and/or possibly of the cellulosome itself.

8.4 Drug Design

The natural tendency of proteins to bind to each other as well as to several

small-molecules (ligands), forming stable and specific complexes is essential for

all biological processes. The description of the structural and functional proper-

ties behind protein–protein or protein–ligand interactions and protein-binding is

very important not only to increase the scientific knowledge in basic terms, but

also for applied research in biomedical science and industrial pharmaceuticals.

One of the most important fields is Medicinal chemistry, at the interface of

chemistry and biology, which has created an important tool in the search for

new drug candidates with a combination of good pharmacodynamic and phar-

macokinetic properties. Although this study can be carried out by having only

an X-ray crystallographic structure of the target, additional structural and func-

tional insights are important for the rational design of more bioactive molecules.

The drug design process includes the structural determination of target protein’s,

hit selection, lead optimization, development of structure-activity relationships

and the design of new compounds. The process of drug development is chal-
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lenging, time-consuming, labor intensive, and expensive. but has as a final goal

to find, develop, and market new chemical entities (NCEs), which can be used

against untreatable diseases, or which have superior properties when compared

to currently available drugs.

Structure-based drug design was usually a field involving the binding of a

small molecule to a biomolecular target that functioned by inhibiting its func-

tion. A typical drug-like molecule had to obey the Lipinski’s rule of five: no

more than five hydrogen-bond acceptors and 10 hydrogen-bond donors, a mo-

lecular weight under 500 Dalton, and a partition coefficient logP, a measure

of lipophilicity, under 5 [15]. Veber et al. added that the candidates should

have 10 or fewer rotatable bonds, and polar surface area equal or less than

140 Å2 [16]. This ensure that it has the physicochemical and pharmacokinetic

properties such as good solubility, a correct balance between lipophilicty and

hydrophilicty, metabolic stability (a good absorption, distribution, metabolism,

excretion ADME), and bioavailability necessary to inhibit specific interactions.

It has to take into account also the toxicity, radical attack (biodegradation),

good quantitative structure–property relationships (QSPR) and good quantitat-

ive structure–activity relationship (QSAR). Nowadays this concept has enlarged

and includes the inhibition of protein-protein interactions (PPI). However, the

discovery of molecules capable of selectively inhibiting PPI encounters many

obstacles such as the large interfacial areas and the relatively flat topographies

of the surface of protein-protein interfaces. Small-peptides capable of disrupt-

ing this kind of interactions, usually cyclic peptides and other modified peptides

do not necessarily obey to the Lipinskiś rule of five. Thus, as peptides present

higher number of degrees of freedom than small molecules, we face a crucial

challenge of the level of flexibility of the systems under study. So, the rational

design of the inhibitors has to take into account the conformational plasticity

of the protein and the interplay between different conformations. Modeling a

protein–peptide complex allows the determination of the pharmacophore model

(geometrical arrangements of chemical features such as hydrogen bonding and

electrostatic and hydrophobic interactions) that can be used to design small
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molecules capable of mimicking the peptide [17].

In this part of the review we are going to focus on some in silico methods

used to facilitate the modeling of protein–protein interfaces and protein-binding.

Among these methods, we stress the determination of the three-dimensional

structures of complexes (protein-protein and protein–ligand) as well as the

structural determination of the crucial amino acids residues involved in bind-

ing by sequential mutagenesis of the entire protein interface (Alanine Scanning

Mutagenesis, ASM), and computational approaches used to design new drugs

and/or optimize the lead.

8.4.1 Protein-Protein Studies

Protein-Protein Docking

Protein-protein binding is one of the critical events in biology. It is extremely

valuable in obtaining structural information and a complete understanding of

both the biochemical nature of the process for which the components come to-

gether, and to facilitating the design of compounds that might influence it. How-

ever, due to the greater difficulty in crystallizing protein-protein complexes, there

is relatively little structural information available about them compared to the

proteins that exist as single chains or form permanent oligomers. Hence, experi-

mental studies are faced with remarkable technical difficulties and the number of

solved complexes deposited in the Protein Data Bank (PDB; www.rcsb.org/pdb)

is still orders of magnitude smaller than those of experimental information on

protein interactions and of structures of individual proteins. Nevertheless the

practical difficulties for a better understanding of the biological function of a

protein, knowledge of its three-dimensional structure is fundamental. Thus, in

the past two decades there was an emergence of a large variety of theoretical al-

gorithms designed to predict the structures of protein–protein and protein-ligand

complexes – a procedure named docking.

Computational methods, if accurate and reliable, could therefore play an

important role, both to infer functional properties and to guide new experiments.

The first protein–protein docking algorithm was developed by Janin and Wodak
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in 1978 [18-20]. Albeit important successes, docking screens remain hampered

by the prediction of false positives and negatives [21]. Because of the complexity

of the problem, protein–protein docking is still largely at the theoretical stage

and there is still considerable scope for the development of methodology [22,23].

The goal of predictive protein–protein docking [24] is to predict the 3D ar-

rangement of a protein–protein complex from the coordinates of its component

molecules, being an accurate prediction the one that will point out most of the

residue-residue contacts involved in the target interaction. Usually, this involves

an exhaustively searching of the rotational and translational space of one pro-

tein with respect to the other, resulting in a six dimensional search. Hence,

there are three key ingredients in the docking: representation of the system,

conformational space search, and ranking of potential solutions [21]. Although

these can vary, the protein-protein docking contains certain problems common

to all procedures: “searching and scoring” [25]. Therefore, “searching” is how to

accurately describe the energy function of a given protein–protein complex and

“scoring” is how to obtain the global minimum energy structure of the complex

using the energy function [21]

Protein–protein docking studies originated a very complete review [21] and

are a subject of study in your lab. We are currently trying to find new ways to

rank the solutions proposed by one of the best softwares in literature (HAD-

DOCK) and achieve a good docking structure [25-30].

Alanine Scanning Mutagenesis (ASM)

Since its initial application to human growth hormone and the growth hor-

mone binding protein, alanine scanning mutagenesis continues to be a valuable

procedure for both hot spot detection and analysis of a wide range of protein–

protein interfaces. Although slow and labour-intensive, alanine-scanning muta-

genesis is the most trendy method for mapping functional epitopes, as alanine

substitutions remove side-chain atoms past the β-carbon without introducing

additional conformational freedom. With the application of this methodological

approach, it has been found that there is a highly uneven distribution of en-
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ergetic contributions of individual residues across each interface, and that only

a few key residues do contribute significantly to the binding free energy of

protein–protein complexes: the hot spots [31].

Hot spots have been defined as those sites where alanine mutations cause a

significant increase in the binding free energy of at least 2.0 kcalmol−1. To have

a strong impact in protein building the binding free energy should be higher than

4 kcalmol−1 (3 orders of magnitude in the binding affinity constant). However,

residues whose mutation results in such large differences are quite unusual, and

the threshold for the hot spots had to be lowered to 2 kcalmol−1 in order to get

enough data for statistical analysis. Systematic analysis of hot spots has shown

a non-random composition: tryptophan (21.0%), arginine (13.3%) and tyrosine

(12.3%) [31].

Even though it is very important to develop an accurate, predictive compu-

tational methodology for alanine scanning mutagenesis, capable of reproducing

and interpreting the experimental mutagenesis values, until recently the success

rates had been modest. Two of the major problems were the fact that alan-

ine mutation of charged amino acids usually generates values in disagreement

with the experimental ones, and the fact that the computational time involved is

much too high to permit a systematic mutagenesis of protein-protein interfaces.

Thus, having as a basis the Molecular Mechanics Poisson-Boltzman Surface Area

(MM-PBSA) approach, we have focussed our attention in ways to decrease the

computational time involved, as well as in techniques that enable the achieve-

ment of the chemical accuracy of roughly 1 kcalmol−1 [32-39].

So, we developed a fully atomistic computational methodological approach

schematized in Figure 8.1 that consists in a computational Molecular Dynamics

simulation protocol performed in a continuum medium using the Generalized

Born Solvation Model of the wild-type system. The post-processing treatment

of the wild-type allows the calculation of the free binding energy of the mutant

complex and all the monomers involved. There are 20 alpha amino acids com-

monly found in proteins and they can be divided into basically four groups

according to the structure of the side chain: non-polar and neutral (valine,
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Figure 8.1. Resume of the methodological approach for computational alanine screening
mutagenesis.

alanine, leucine, isoleucine, phenylalanine, proline, glycine, methionine and

tryptophan), polar and neutral (aspargine, glutamine, cysteine, tyrosine, ser-

ine and threonine), acidic and charged (aspartic acid and glutamic acid), basic

and charged (lysine, arginine, and histidine). As histidine can be uncharged

or charged at physiological pH we have grouped this residue with lysine and

arginine at the basic and charged amino acids. Recalling that we used only one

trajectory for the computational energy analyses, it is important to highlight that

side chain reorientation is not included explicitly in the formalism. As amino acid

polarity increases, the structural effect beyond the neighbour residues also in-

creases, and the conformational reorganization after alanine mutagenesis should

be more extensive. This reorganization is not explicitly taken into account in

the single trajectory protocols but its effect can be implicitly included by raising

the internal dielectric constant. It is not possible to know the correct internal

dielectric constant value that should be used because it depends on the mutated

amino acid and the interacting residues. Nevertheless, we have noticed that by

using only an internal dielectric constant set of three different values, exclusively

characteristic of the mutated amino acid (2 for the non-polar amino acids, 3 for

the polar residues and 4 for the charged amino acids), it was possible to obtain

an excellent agreement with the experimental results for the ΔΔGbinding values.

If we consider a deviation of ±1.4 kcalmol−1 from the experimental value as an
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accurate result, we have an overall success rate of 82%, a 82% success rate for

hot-spots [32-39].

8.4.2 Protein-Ligand Studies

Protein-Ligand Docking- MADAMM as an example

Proteins are an essential part of the organisms and participate in virtually

every process within cells. A vast number of these processes require that small

molecules bind to specific spots of these macromolecules. These molecules can

act as switches to turn on or off a protein function, or can be the substrates

of a particular chemical reaction that is catalyzed by a specific protein. Un-

derstanding the mechanism by which proteins associate and interact with small

molecules, has thus become a subject of paramount importance in drug dis-

covery. Conventional experimental techniques for obtaining detailed structural

information about protein-ligand complexes are time and resource intensive.

To overcome these limitations, several computational methodologies and al-

gorithms have emerged in the last 10 years endeavoring to foresee and improve

the understanding of this difficult-to-obtain structural information. These tech-

niques are normally defined as protein-ligand docking and predict as well as

rank the structure(s) arising from the association between a given ligand and a

target protein of known 3D structure.

Generally speaking, as we have previously stated, all molecular docking

methodologies are composed by two different algorithms: the search algorithm

and the scoring function. Despite the apparent simplicity of these methodolo-

gies, they have several hidden weaknesses and present a number of problems

from the computational point of view. One of the major problems arises from

the tremendous complexity of the system, from which result hundreds of thou-

sands of degrees of freedom that need to be analyzed, requiring huge computa-

tional resources. Furthermore, the combination of the energetic forces acting on

the binding process is not-completely-known or/and it is difficult to calculate.

Therefore, different simplifications are imposed to these methodologies to turn

them fast, accurate, and attractive in different situations.
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The degree and number of approximations upon which these theories are

based on have thus become the major cornerstone issue in this field. Most of

the simplifying assumptions are helpful in order reduce the computation time,

but they can also lead to unusable results [40]. Therefore, the correct balance

between these two aspects has become the key of success in this field.

With respect to the dynamics aspects of molecular recognition, most of the

molecular docking methodologies lie along a spectrum of models bound by the

lock-and-key and induced-fit theories for ligand binding. In such models, the

receptor is treated as a rigid body and only in the second one the translation,

rotation, and torsion degrees of freedom are calculated. During the last decade,

several protein-ligand docking algorithms based on these simplifications have

been successfully applied in several problems [41-45]. Despite the breathtaking

advances in the field and the widespread application of these methods, several

downsides still exist. Particularly, protein flexibility is a major hurdle in current

protein-ligand docking efforts that needs to be more efficiently accounted for.

Many programs have been developed in the last 5 years that account for

protein flexibility in protein-ligand docking methodologies. All of them have

their own merits and shortcomings, and reveal that accounting for protein flex-

ibility in protein-ligand docking algorithms is still challenging. One of the latest

is MADAMM, a multi staged Docking with an Automated Molecular Modeling

protocol [13]. This program is a new molecular docking protocol that allows

introducing a certain degree of flexibility (as much as we want/need) to the

receptor and full flexibility to the ligand, without requiring an excessive time

of computation in the full process. This docking software has shown excellent

results in several studies, in which standard and popular docking software failed

to achieve the correct result. To demonstrate the potential and capabilities of the

MADAMM protocol, in Figure 8.2 we present our attempts to dock the proges-

terone to the active site of monoclonal antiprogesterone antibody DB3. Looking

at the active site region of the unbound and bound structures of the receptor

(A–dark blue and B–light blue) we can see that Trp100 adopts two distinct con-

formations. In the unbound form, it is facing to the center of the active site,
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whereas in the bound form it is displaced to the right hand side. This small, but

crucial conformation rearrangement is sufficient to generate a faulty result when

we try to dock the ligand to the active site region of the unbound structure,

using standard docking software (A–black). This result is not dependent on the

limitations of the search algorithm or scoring function of the docking algorithms.

It simply results from the conformation adopted by Trp100, which in the active

site of the unbound structure occupies the space that is required for the cor-

rect binding of the ligand (as it can be observed analyzing the conformation of

Thr100 in the bound structure).

When the MADAMM protocol was applied to this case study, we were able

to flexibilize several residues in the region of the active site, including Thr100.

After the docking procedure, several complexes were obtained with the ligand

bound in different conformations to the active site of the receptor. Each complex

was subsequently subjected to a set of minimizations and small dynamics jobs

that were recursively ranked and clustered in distinct groups taking into account

the protein-ligand affinity. After a set of cycles, the top scored solutions were

selected. The best solution is displayed in Figure 8.2 (D–Yellow). This structure

almost resembles what is found in the unbound X-ray structure, showing only

a small RMSD of 0.13 Å.

This case study has shown that MADAMM can efficiently accomplish a good

compromise between what can be predicted and what is obtained experiment-

ally. This means that this protocol can be viewed as a powerful tool to un-

derstand protein-ligand interactions, especially on those cases where few or no

experimental structures of the complexes are available. The same study also

alerts for the limitations of the standard docking software especially on those

cases where the orientation of particular residues at the protein-ligand interface

is neglected. The results have shown that the conformations adopted by some

residues in the region of the active site can have a crucial influence on the way

the ligand interacts with the receptor. Disregarding its presence can be respons-

ible for most of the false positives results that are obtained with the available

rigid-based docking software.
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Figure 8.2. Dark blue: X-ray structure of the unbound form of the protein. Light blue:
co-crystallized X-ray structure with the bound substrate. Yellow: MADAMM result. Black:
standard docking result (using the GOLD software).

Design of Inhibitors and Energy Assessment

Efficient and accurate calculation of protein-ligand affinities is another fo-

cus of our group. During the past few years we have studied the ability of

the enzymes, namely enzymes involved in lethal diseases, to bind preferen-

tially to a set of ligands (substrates, inhibitors, new inhibitors, proteins). To

quantify the preferential binding of a set of ligands, we have calculated values

of free energy of binding, using a complex but accurate computational method,

called Thermodynamic Integration (TI) [46-49], and/or the more computation-

ally acessible MMPBSA [50] method. TI is a rigorous method for calculating free

energies, but requires extremely time consuming simulations, even with a large

high-performance computer cluster. The faster and simpler, but still accurate,

MMPBSA method is many times used as an alternative to TI.

We have been particularly interested in protein-ligand studies with HIV-1 Pro-

tease. All treatments for HIV-1 infected persons include, at least, one Protease

inhibitor. Based on Protease-ligand studies we have published a new theory for

196



HIV-1 Protease recognition [51] and developed new inhibitors for HIV-1 Protease

using other inhibitors (Nelfinavir [52], Amprenavir) as leads. The understanding

of the mechanism of Substrate recognition by HIV-1 Protease is a key step for

drug design targeting the enzyme. In this section we present three new inhibit-

ors, designed with computational tools, with greater affinity for HIV-1 Protease

than Nelfinavir itself.

Nelfinavir (Viracept®) is a potent, orally bioavailable inhibitor of the en-

zyme HIV-1 Protease, which has been developed through structure-based drug

design projects and has been approved worldwide for the treatment of HIV in-

fected patients. However, HIV-1 develops drug-resistance and the affinity of

Nelfinavir for the binding pocket of Protease is decreased. We have presented

three new variants (Figure 8.3) of Nelfinavir, designed with computational tools,

with greater affinity for HIV-1 Protease than Nelfinavir itself. In order to increase

the inhibitory efficiency, we have introduced rational modifications in Nelfinavir,

optimizing its affinity to the most conserved amino acids in Protease. The new

inhibitors interact more favourably with well-conserved residues, Leu23, Ala28,

Gly49, Arg87, and Asp29, which cannot mutate, as the mutants would render the

Protease catalytically inactive [53]. Figure 8.3 shows a schematic representation

of the binding region for Nelfinavir with which the substitutions introduced in

the inhibitors are meant to interact. The dashed lines give an idea of the location

of the empty pockets between the well-conserved amino acids and the inhib-

itors. Figure 8.3 shows also three examples for which significant increases in

affinity can still be achieved without changing the overall structure, molecular

mass and hydrophobicity of the inhibitors, thus preserving their very favour-

able ADME properties. Minimization and molecular dynamics simulations [46]

have been carried out on the complexes, HIV-1 Protease with Nelfinavir and

subsequently with the new inhibitors, in order to analyze the behavior of the

systems. To quantify the affinity of the new inhibitors relatively to Nelfinavir, we

have calculated values of free energy of binding, first using the TI approach and

subsequently the less computationally demanding MMPBSA [50] methodology.

The values for the binding free energy difference presented (Figure 8.3) are val-
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Figure 8.3. Three new inhibitors; based on Nelfinavir as lead, which have a higher affinity
in silico for Protease than Nelfinavir (the negatives binding free energy difference ΔΔG
reflect this).

idated by the correct reproduction of the experimental binding free energy for

Nelfinavir.

This example shows how powerful the design of inhibitors can be for rational

lead optimisation, avoiding handling dangerous and toxic materials and greatly

reducing experimental costs. There have been dramatic successes with drug

design.

8.5 Enzymatic Mechanisms

In addition to the several applications outlined in the preceding sections, a

particularly strong and promising area in the field of computational proteomics

is that of computational enzymology, i.e. the use of computational methods to

study enzymatic activity, in particular catalytic pathways. In fact, computational

methods allow the detailed analysis of important enzymatic reaction mechan-

isms, providing atomistic insight into very specific processes of highly biolo-

gical significance, often very difficult to tackle by means of experimental studies

alone. While a vast number of experimental techniques are normally employed

in the study of reaction mechanism, from spectroscopic experiments and muta-

genesis studies to kinetic evaluations, no experimental technique, by itself, can

normally give a full view of an entire catalytic pathway. In addition, the interplay

between different experimental methodologies is often not peaceful, with differ-
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ent techniques frequently pointing to different (at least apparently) conclusions.

Computational methods often offer an unbiased way to concert and validate the

information obtained from different experimental methods, providing also the

missing pieces. So, in a process in which something always seems to be missing

computational methods often have the final word, which frequently comes in

the form of a structure for the transition state intermediate and of the corres-

ponding energy barrier, indispensable requirements to fully assess the viability

of a mechanistic proposal.

During the last decade, we have studied a large number of enzymatic catalytic

mechanisms. From these, we would like to highlight 5 particularly important

biological systems, in which our effort helped to shape and validate the presently

accepted pathway. These are the radical enzyme ribonucleotide reductase, the

very important glutathione transferase, thioredoxine, glycosidase, and the Zn

metalloenzyme farnesyltransferase.

8.5.1 Ribonuclease Reductase (RNR)

Nowadays, with the exception of viroids and virusoids, all modern organ-

isms have their genetic information encoded into a DNA molecule. The exploit

and maintenance of this information depends on the availability of deoxyribo-

nucleotides. These compounds cannot be obtained by external sources and the

only way by which they can be synthesized is through the reduction of ribo-

nucleotides into deoxyribonucleotides. This reaction is strictly conserved in all

living organisms and is catalyzed by a peculiar enzyme called ribonucleotide

reductase (RNR). This key role makes RNR a rate limiting step in DNA replic-

ation and repair, turning it into an attractive target for antitumor, antiviral and

antibacterial therapies [54,55]

RNRs are mechanistically fascinating proteins because of their free radical

chemistry, unusual metallocofactors and complex regulatory mechanisms. In

the past 20 years, several studies have been addressed at this enzyme, aiming

to understand its peculiar mode of action. However, and despite its success as

a target in many cancer therapies and HIV/bacterial treatments, the underlying
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mechanisms by which this enzyme is either inhibited or reduces ribonucleotides

into deoxyribonucleotides is poorly understood taking into account the inform-

ation available from the experimental data. Great advances in this field were

achieved when RNRs related mechanisms were studied by theoretical and com-

putational methodologies. These methods and particularly the quantum chem-

ical calculations have become an indispensable tool in this field, allowing to

solve a puzzle of many unrelated and disconnect pieces that were found out by

structural biology studies and biochemical experiments. The main advantage of

the computational methods is that they can provide structural information on

transition states and snapshots of molecules in the act of reaction, whose direct

detection is not possible or is difficult to obtain by normal physical methods.

This is particularly important in RNR since it is a radical enzyme, and these

methods enable to identify and characterize unstable intermediates at an atomic

detail.

During the past 10 years, our group has developed a comprehensive know-

ledge and thorough understanding of every process involved in the normal RNR

functioning and in its inhibition mechanisms, using theoretical and computa-

tional means. In this process, we began by exploring different strategies to

model the active site of this enzyme. A good balance between the size of the

system and accuracy of the results is always difficult to achieve in computational

chemistry. This is especially true when we aim to study biological systems where

the results can be largely influenced by size of the model that is used. There-

fore, we started to study RNR testing several models of the active site that range

from 20 atoms [56], 300 atoms [57] to the full R1 monomer (that contains 30000

atoms) [58]. To complete this task, hybridmethodologies, and particularly ONIOM

approach, were used with the larger models. These methodologies allow to di-

vide the model in different layers that can be treated with different theoretical

levels. The atoms directly involved in the reaction are calculated with higher

theoretical levels and the remaining ones with a lower theoretical level. This ap-

proach has proven to be most successful, allowing us to tune the best approach

to study this enzyme, from a computational point of view. This information
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was then used to explore all relevant chemical pathways that could be involved

in the catalytic mechanism [56,59] of RNR as well as in the inhibitory mechan-

ism of several substrate analogues inhibitors that inactivate the function of the

enzyme [60-67]. Some of the results obtained through computational method-

ologies were pioneers in the RNR field and later confirmed and acknowledged

by experimental findings.

Theoretical and computational methodologies were therefore a major

groundbreaker in this field allowing to unravel the unsolved mysteries around

RNR. Without their value contribution it would be very difficult to understand,

explain and predict most of the knowledge that is currently available. All the

work developed in this area can now be used to understand, which are the most

important checkpoints that must be triggered during the inhibitory mechanism

in order to enhance and improve the potency of a RNR inhibitor, or develop

new ones. These results have thus created a trend in which researchers can

now base their studies to conduct a more rational drug design approach in the

development of novel drugs against RNR.

8.5.2 Glutathione Transferase

Glutathione transferases (GSTs) have been known as fundamental enzymes

of the cell detoxification system for almost fifty years now. The cell detoxific-

ation mechanism of xenobiotic and endobiotic compounds follows a series of

different steps. In the first step toxic compounds are converted into strong elec-

trophiles by the mixed-function oxidation activity of cytochrome P-450. Those

electrophiles are subsequently transformed into more soluble and less toxic sub-

strates, by conjugation with glutathione (GSH) due to the catalytic activity of

GST. Finally, these resulting conjugates can be recognized by ATP-dependent

transmembrane pumps, such as P-glicoproteins and MRP family proteins, and

consequently expelled from the cell. On the other hand, GSTs have also an act-

ive role in byosinthesis, cell signaling pathways [68], and are related to human

diseases such as Parkinson’s [69,70], Alzheimer’s [70-74], atherosclerois [75-77],

liver cirrhosis [78,79], aging [80] and cataract formation [81]. The reaction cata-
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lyzed by GST consists in the nucleophilic addition of the sulfur thiolate of GSH

to a wide range of electrophilic compounds. When GSH binds to the GST G-

site active center the pKa of the thiol group drops from 9.1 to about 6.2-6.6 pH

units [82], promoting its deprotonation. After GSH activation, the nucleophilic

sulphur atom attacks the electrophilic toxic compound present in the H-site

active center, producing a less dangerous compound.

Despite cytosolic GST’s being vastly studied by the scientific community, the

main aspects of the catalytic events are still to be understood. Recently, using

as a model the GSTA1-1 enzyme, we proposed a GSH activation mechanism

consistent with the experimental data [83,84]. Our studies have demonstrated

that a water molecule is able to assist a proton transfer between GSH thiol and

alpha carboxylic groups with an activation energy of 13.39 kcalmol−1, after a

first conformational rearrangement of GSH (ΔGconf = −1.62 kcalmol−1) that al-

lows the water molecule to interact simultaneously with both the thiol and the

glutamyl alpha carboxylate groups. This energy barrier is in agreement with

the experimental kinetics for the GST catalyzed GSH-CNDB conjugation, a com-

mon electrophilic substrate (kcat = 88±3 s−1, ΔG‡ = 15.06 kcalmol−1 [85]).

Figure 8.4 resumes all the events. We also demonstrated that a catalysed dir-

ect proton transfer between the two GSH active groups is very unlikely (en-

ergy barrier = 15.88 kcalmol−1) for the GSH conformational rearrangement, plus

19.44 kcalmol−1 for the actual proton transfer). In order to study the free energy

associated with the initial GSH conformational rearrangement we calculated its

potential of mean force (PMF) using the umbrella sampling method. All the mo-

lecular dynamics simulations and subsequent analyses were carried out using

the Gromacs software package conjugated with the AMBER99 force field [86-89].

To study the actual proton transfer an ONIOM model of the GSH G-site active

center was built. Then we performed a scan of the water proton approach to

the most suitable GSH glutamate alpha carboxylate oxygen. With the three sta-

tionary points we were able to calculate the proton transfer activation energy,

ΔG.

Arg15 is a strictly conserved active site residue in class Alpha GSTs [90],
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however very little is known about its role in catalysis. In order to clarify the

importance of this conserved residue we analyzed the activation energy barrier

and structural details associated with the GSTA1-1 mutants R15A, R15Rε, η-c (an

Arg residue with the ε,η-nitrogens substituted by carbons) and R15Rneutral (a

neutral Arg residue due to the addition of a hydride in the ζ-carbon) [91]. A

similar mechanism to the one used in our GSH activation proposal was used.

The energy barriers associated are in agreement with the experimental values

available [90] and can be analyzed in Figure 8.4. The structural analyses of

the enzymes allow concluding that in the wild type enzyme GSH binds to the

G-site pocket in a specific arrangement not seen in the mutants. The charged

Arg15 establishes a strong ion-dipole interaction and a hydrogen bond with

the GSH cysteine mainchain, which dictates the arrangement of the substrate.

For the R15Rneutral mutant, hydrogen bond interactions are still possible to be

established between the residue 15 sidechain ε, η nitrogen atoms and the GSH

cysteine mainchain carbonyl group. However, without the positive charge, the

spatial arrangement of residue 15 changes leading to a new, not catalytically

efficient, GSH conformation. In the other mutants this new GSH conformation

is also observed and is supported by the experimental data available for the

mutant R15A (KMGSH is 10-fold increased relatively to wildtype enzyme [90]).

The volume of Arg15 does not seem to be as catalytically relevant as the charge.

The R15Rneutral mutant residue 15 has the same volume as the wildtype Arg15,

however this mutant shows an energy barrier similar with the smaller R15A

mutant.

8.5.3 Thioredoxins (Trx)

The enzymes of the thioredoxin (Trx) family fulfill a wide range of physiolo-

gical functions. Although they are structurally similar and have a similar CXYC

active site motif, with identical environment and stereochemical properties,

where C stands for cysteine and XY for two variable residues, the redox po-

tential and pKa of the cysteine pair varies widely across the family. As a con-

sequence, each family member promotes oxidation or reduction reactions, or
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Figure 8.4. GSTA1-1 water assisted GSH activation mechanism.
A – Distance δ was steadily decreased in each PMF window. The curve represents the
sum of the entire data obtained from the PMF forward and backward processes. On the
right hand side a detailed view of the GSTA1-1 complex, in which GSH has been circled,
is represented.
B – Wild type and mutant enzymes water assisted proton transfer Gibbs energies of
the three stationary points: Reagent (R), Transition State (TS) and Product (P). Energies
calculated with DFT, functional B3LYP and basis set 6-311++G(2d,2p). On the right hand
side the G-site model is represented along with distance σ, decreased at each scan point.

even isomerization reactions.

We carried out a set of quantum mechanical calculations in active site models

to gain more understanding on the molecular-level origin of the differentiation of

the properties across the family. We theoretically explored the reaction mechan-

isms, both in the gas phase and in water, using density functional theory [92,93].

The mechanism of disulfide reduction involves two consecutive thiol-disulfide

exchange reactions, that is, nucleophilic substitutions at sulfur (SN2@S): first, by

the nucleophilic cysteine-thiolate group (Cysnuc) at a sulfur atom of the disulf-

ide substrate and, second, by the other cysteine-thiolate group (called buried

cysteine, Cysbur) at the sulfur atom of the Cysnuc.

The obtained results, together with earlier QM/MM ONIOM calculations in

which absolute and relative pKas of the nucleophilic cysteines for Trx and DsbA
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Figure 8.5. DFT calculations on small models and larger ONIOM models gave rise to
a consistent line of evidence that thiol-disulfide exchange reactions regulation across
the thioredoxin family are promoted by the differential stabilization of both active site
cysteines.

were calculated and the possible causes for thiolate stabilization were investig-

ated [94,95], gave rise to a consistent line of evidence, which points to the fact

that both active site cysteines play an important role in the differentiation. Con-

trary to what was assumed, differentiation is not achieved through a different

stabilization of the solvent exposed cysteine but, instead, through a fine tun-

ing of the nucleophilicity of both active site cysteines [94,95]. The feasibility of

shifting the chemical equilibrium toward oxidation, reduction, or isomerization

only through subtle electrostatic effects is quite unusual, and it relies on the in-

herent thermoneutrality of the catalytic steps carried out by a set of chemically

equivalent entities all of which are cysteine thiolates.

8.5.4 Beta-Galactosidase

Carbohydrates are involved in many cellular processes, being crucial to life.

Glycosidases constitute a vast family of enzymes that catalyze the breaking and

formation of glycosidic bonds. β-Galactosidase is a retaining glycosidase that

catalyzes both the hydrolytic breaking of the very stable glycosidic bond of

lactose, as well as a series of transglycosylation reactions [96]. It has great bi-
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Figure 8.6. Representation of the catalytic mechanism for the hydro-
lysis/transglycosylation reactions, catalyzed by retaining Glycosidases.

otechnological interest for the food and pharmaceutical industries, where it is

used to catalyze the large-scale production of oligosaccharides [97]. To under-

stand the atomic-level factors that determine the outcome of the reaction (hy-

drolysis/transglycosylation) and the yield of each of the many transglycosylation

products, an atomic level study of this catalytic mechanism was performed, us-

ing DFT and Molecular Mechanics as theoretical levels [97-100]. In order to

shed some light over these topics, we have developed a model system that in-

cludes a simplified reaction center and a small substrate molecule to capture

the intrinsic reactivity of the active-site motif. A very small enzyme model, con-

taining only the two reactive carboxylic amino acids and a small substrate was

used in DFT calculations [99,100]. Our results were able to confirm and provide

molecular-level detail to the general mechanism proposed for this family of en-

zymes (Figure 8.6): a double-displacement mechanism involving a glycosylation

and a deglycosylation step, in which one of these key carboxylic acids acts as a

nucleophile and the other as an acid/base catalyst, with the reaction proceeding

via a covalent intermediate. In the transition states (TSs), a very interesting and

short hydrogen bridge is formed between the nucleophilic residue of the enzyme

and the HO − C2 of the sugar ring. Our calculations reveal that the role of this

hydrogen interaction is to lower the energy of the TSs by circa 5 kcalmol−1,

contributing considerably to the stabilization of these states in both steps. A
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structural rearrangement of the sugar ring is also observed; therefore, we sug-

gest that the hydrogen bridge facilitates the change from the typical chair form

to the half-chair conformation at this stage, which helps to stabilize the nascent

oxocarbenium ion.

The performance of a wide variety of DFT functionals was tested in order

to choose the one that better describes the thermodynamics and kinetics of our

model system. The results have shown that the obtained energies indeed depend

on the particular density functional employed. In our case, the correct choice

of the functional was crucial as the most widely used have resulted in uncer-

tainty in the activations energies values of over 8 kcalmol−1. Comparison with

the very high level calculations (MP2, MP3, MP4 and QCISD(T)) allowed for the

identification of the most accurate functionals (BB1K, MPW1K and MPWB1K)

for this particular reaction. Based on these conclusions, the ONIOM method

(BB1K:AMBER//B3LYP:AMBER calculations) was employed to address such a

large enzymatic system [98]. This enzymatic model can efficiently account for the

restrained mobility of the reactive residues, as well as the long-range enzyme-

substrate interactions. Figure 8.7 shows the enzymatic model studied, which

includes a 15 Å radius of the amino acids around lactose. The high-level layer

(treated with quantum mechanics) is also represented. QM/MM calculations

demonstrate the crucial importance of the enzyme scaffolding beyond the first-

shell amino acids in the stabilization of TSs, indicating the need to include the

enzyme explicitly in computational studies. Our results suggest that the role

of the magnesium ion in the catalytic reaction is to lower the activation bar-

rier by 14.9 kcalmol−1, contributing considerably to the stabilization of the TS

structure. Comparison of the energetic values for the different transglycosylation

reactions (β(1−3), β(1−4) and β(1−6)) studied shows that these reactions are

all very similar from a kinetic perspective, which seems reasonable given the

similarity in the bond-breaking/bond-forming processes. However, thermody-

namically, they are quite dissimilar: the formation of β(1−3) glycosidic linkages

is thermodynamically very unfavorable, whilst the formation of β(1 − 6) glyc-

osidic bonds is the most favored, in total agreement with the enantioselectivity
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Figure 8.7. Representation of the enzymatic model (colored blue), which includes a 15Å
radius of the amino acids around lactose (shown in green and red). The magnesium ion
is the yellow sphere, whereas the high-level layer (treated with quantum mechanics) is
colored in orange.

observed experimentally.

As the β-Galactosidase from E. coli is an enzyme commonly used in molecu-

lar biology research, a complete knowledge of the different reaction pathways

is crucial to the development of new chromophore substrates. Furthermore,

these results help to improve the efficiency of large-scale industrial design and

synthesis of new inhibitors and carbohydrates for both the pharmaceutical and

food industries.

8.5.5 Farnesyltransferase

In addition to the enzymatic studies outlined above, computational methods

provide particularly important insights into the study of metalloenzymes, acting

as a bridge between the several spectroscopic methods normally employed to

handle such systems.

In the case of the Zinc metalloenzyme FTase, for example, the large body of
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experimental results available from kinetic studies on mutant FTase species and

X-ray crystallography, and the information obtained from the relatively limited

range of spectroscopic methods directly applicable to biological Zinc complexes,

were insufficient to allow an univocal atomic-level interpretation of the catalytic

mechanism followed by this enzyme [101-103]. Computational methods can be

used in such cases to go beyond the traditional limitations of standard experi-

mental studies, providing the missing pieces [104-106].

We have used first principles quantum mechanics (B3LYP) and

ONIOM (B3LYP:PM3) to analyze the several possible Zn coordination modes

suggested from the apparently contradicting experimental studies on the FTase

resting state. Interestingly, we have found that both coordination proposal

discussed in the literature – a tetracoordinated Zn sphere with a monodentate

Asp ligand and water molecules versus a bidentate Asp proposal without water

– were in agreement with the EXAFS structural data available and could be

valid. In addition, our computational studies showed that both alternatives were

at a remarkably close energetic proximity and that a conversion between the

two could take place with a very small energetic barrier at room temperature.

These conclusions allowed us to develop a new and unified paradigm regarding

the nature of the Zn coordination sphere in FTase and the identity of the ligands

present [107], considering that both alternatives exist at equilibrium, and that

such process is achieved through a carboxylate-shift mechanism, where a

monodentate to bidentate change (and vice-versa) by the Asp ligand helps to

compensate ligand entrance (or exit) processes [108].

This main idea was later applied into the study of the several Zn sphere

formed along the FTase catalytic mechanism, also with small model QM and/or

QM:QM calculations [109-111], paving the way into an understanding of the

more complex catalytic step, which involved a very significant conformational

rearrangement of one of the substrate inside the enzyme active-site and which

required significantly larger models for accurate computational modeling.

Our mechanistic studies on this enzyme culminated with the finding of the

transition state intermediate of this highly concerted step [112], a structure that
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could provide a blueprint for the design of more potent and specific FTase

inhibitors.

8.6 Density Functional Benchmarking

According to the Hohenberg-Kohn theorems, every electronic property of a

ground-state, non degenerate system, can be directly calculated by a functional

where the unique variable is the electronic density [113]. Hence, opposed to

wave function theories of electronic structure which treat each electron in the

chemical system as a single entity, density functional theory works with the elec-

tron density as a whole. Here lies the great power of DFT, its simplicity allows

its application to very large systems, with dozens or even hundredths of atoms,

at much lesser computational effort than other methods where electronic correl-

ation is also accounted for [114]. But what is the problem with DFT? In principle,

DFT is exact, as the functional whom relates electron density with energy was

proven to exist; in practice, the theory is only an approximation, as the func-

tional is not fully known. For the electronic energy functional, the problematic

term is the one used to calculate the exchange-correlation energy, related with

the punctual interaction between electrons, either of the same spin (exchange),

or opposite spin (correlation). All of the problems with DFT come from this lim-

itation. As this term is not known, dozens of exchange-correlation functionals

spawned in the field, along the years, trying to make up for this void. They are

distributed among some groups, increasing in complexity: LDA (Local Dens-

ity Approximation), GGA (Generalized Gradient Approximation), Meta-GGA,

Hybrid-GGA and Hybrid-Meta-GGA [3,115,116]. Mostly, the functionals have

empirical motivation, as well as empirical parameters, and although as a gen-

eral trend more complex functionals are better, this is not an exact rule. The

empirical character of the functionals make them unfit to apply outside certain

chemical problems, to which they were not parameterized. Being so, there is no

theoretical way of telling which functional is better for a determined system, and

the only way to test it is by doing a functionals benchmarking study. Supporting

this consideration one could cite a modest number of benchmarking studies,
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each one aiming for certain chemical properties: geometry [117,118], kinetic

barriers and termochemistry [119], binding and dissociation energies [119], non-

bonded interactions [120] There are three major concepts in a benchmarking

study, each one of them with their proper considerations: (i) The model - The

model system chosen to do the benchmarking should be representative of the

subject being studied, as usually one is not interested in that system in particular

but in a certain detail of it, such as hydrogen bonding or a phosphodiester bond

hydrolysis. Furthermore, the model should be small enough, allowing the use

of very accurate reference methods, which are, by definition, computationally

costly; (ii) The reference value – The reference value should be as accurate as

possibly for the system in question. Here, the use of composite methods can

be quite resourceful. These methods take advantage of error cancellations by

stating, for example, that the difference between the correlation energy at MP2

level and CCSD(T) is independent of the basis-set. Furthermore, there are vari-

ous methods who emulate the use of a complete basis-set at an acceptable range

of error and computer demands. By conjugating these two types of approxima-

tions one can proudly state in an abstract an energy reference value calculated

at a CCSD(T)/CBS level for a system of twenty atoms; (iii) The functionals –

Regarding the choice of the functionals, one could opt by testing them all, al-

though that is hardly a good path as there are a huge number of them. Instead,

a representative group should be created, one that includes functionals from

all types (GGA, M-GGA) and preferentially the most recent ones. After that, in

order to rank the functionals one should compare their results with the results

from the reference methods.

At the end of the Benchmarking one should be able to say what functional

is more adequate to evaluate a certain chemical property. Provided with this

information, another researcher can wisely choose the functional for their study

without going for the trendy functional – B3LYP -, the most typical situation, or

without the need of doing a functional benchmarking study himself.
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Benchmarking of DFT functionals for the hydrolysis of phosphodiester

bonds

In our group we work mainly with enzymes and their catalytic mechanisms.

These systems, large as they are, tend to be divided into layers, being the outer

layer described either by molecular mechanics or semi-empirical methods, and

the inner layer by DFT. Most of the times, we stand before the mentioned prob-

lem of not knowing the best functional to study the enzymatic reaction. Hence,

we usually do a benchmarking study to fix this. In a recent work [121], we take

dimethylphosphate hydrolysis as a model for phosphodiester bonds hydrolysis.

These kinds of reactions are present on many enzymes involving DNA, RNA and

phospholipids. Therefore, this study has great scope and could be applied to

many important biological systems. In our particular case, the main motivation

behind the study was the 3’ end processing reaction of HIV Integrase.

In the work done, we described four reactions paths, all involving dimethyl-

phosphate as the major reactant. We varied the nucleophile, which could be

a molecule of water or a hydroxide ion, and the medium that could be either

implicit water or vacuum. The potential energy surface for each one of these

reactions was obtained at a CCSD(T)/CBS//B3LYP/6311++G(2d,2p) level, being

CCSD(T)/CBS the reference energy. Subsequently, we tested a total of 52 func-

tionals with the obtained structures. Furthermore, the performances of HF, MP2,

MP3, MP4 and CCSD were also evaluated. When comparing with the reference

energy, the results showed that MPWB1K, MPW1B95 and PBE1PBE are the most

accurate functionals for calculating activation and reaction energies, with MUEs

(Mean Unsigned Error) below 2 kcalmol−1. Concerning only activation energies,

MPWB1K, MPW1B95 and B1B95 give the best results. Furthermore, we take two

other important conclusions from this work: the basis-set 6-311+G(2d,2p) is the

most balanced one regarding the relationship between computational time and

accuracy; and the inclusion of the triples excitations on CCSD(T) has major im-

plications in the obtained energies.

The necessity for benchmarking studies will be present all the time, as the

progress in this field occurs at fast pace and the number of functionals tend to
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increase daily. We hope that with this and other works, researchers can always

achieve the best outcome from their experiments without being overwhelmed

by the enormous amount of DFT functionals available.
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